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Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and
by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate
Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral
sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer
or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial
resolutions) to detect Sargassum and to differentiate it from other floating materials such as Trichodesmium,
Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive
reflectance curvature of ~630 nm due to its chlorophyll c pigments, which provides a unique spectral signature
when combined with the reflectance ratio between brown (~650 nm) and green (~555 nm) wavelengths. For a
10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule
to examine several indexes established from6bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be
effective to unambiguously differentiate Sargassum from all other floatingmaterials Numerical simulations using
spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is de-
graded when a pixel is mixed between Sargassum and water. A minimum of 20–30% Sargassum coverage
within a pixel is required to retain such ability, while the partial coverage can be as low as 1–2% when detecting
floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs ~ 200:1), the
hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to
improve our capacity to detect, discriminate, and quantify Sargassum.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Sargassum spp. is a brown macroalga that is abundant in the Gulf of
Mexico (GOM) and the Atlantic (Gower & King, 2011; Gower, Hu,
Borstad, & King, 2006). Providing food, shade, and shelter to fish,
shrimp, crabs, turtles, and other marine organisms (Council, 2002;
Rooker, Turner, & Holt, 2006; Witherington, Hirama, & Hardy, 2012),
Sargassum serves as an important habitat in the marine ecosystem.
Sargassum may also play an important role in marine primary
productivity (Gower et al., 2006), nutrient remineralization, dynamics
of colored dissolved organic matter, and bacterial activities (Lapointe,
1995; Lapointe, West, Sutton, & Hu, 2014; Zepp, Shank, Vähätalo,
Bartels, & Jones, 2008). In coastal zones, Sargassum can be a natural
fertilizer for dune plants, helping prevent coastal erosion (Anthony,
Vanhee, & Ruz, 2006; Tsoar, 2005). On the other hand, excessive
Sargassum on the beach is a burden to local coastal managers as they
represent a nuisance and a health hazard, and thus must be physically
removed. For example, in Texas of the United States, local management
agencies needed to rent equipment to remove Sargassum from the
beaches almost every year. Indeed, many beaches around the GOM
and the southern Caribbean are subject to Sargassum deposition on a
regular basis (Gower, Young, & King, 2013).

Accurate knowledge of Sargassum distributions and their temporal
changes helps quantify their role in modulating local biogeochemistry
and carbon cycling. Timely information on the occurrence of Sargassum
is useful for both research and management such as implementation of
harvesting policy, equipment rental for beach cleaning, and providing
guidance on planning field surveys and recreational fishing. When
such information is not available in near real-time, retrospective
analysis of Sargassum distributions can also help understand local
ecology and physical processes (e.g., eddies and eddy fronts). To date,
remote sensing has served as the primary means to study Sargassum
distributions. Unfortunately, due to technical limitations, detecting
Sargassum or quantifying Sargassum biomass has been difficult, not to
mention performing these tasks in near real-time.

Gower et al. (2006) is perhaps the first study that demonstrates the
use of the Medium Resolution Imaging Spectrometer (MERIS) satellite
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instrument to detect Sargassum in the GOM. Since then, several recent
studies showed the capacity of other satellite sensors (e.g., Moderate
Resolution Imaging Spectroradiometer or MODIS, Landsat TM and
ETM+, Geostationary Ocean Color Imager or GOCI) in detecting Sargas-
sum or other floating macroalgae (Hu, 2009; Hu, Cannizzaro, Carder,
Muller-Karger, & Hardy, 2010a; Son, Min, & Ryu, 2012). MERIS was
also used to derive time-series of Sargassum distributions in the GOM
and North Atlantic (Gower & King, 2011; Gower et al., 2013). These
studies are based on the principle that Sargassum macroalgae are
floating vegetation on the sea surface and therefore would cause
enhanced reflectance in the near-infrared or NIR (the red-edge effect,
i.e., enhanced reflectance between 700 and 730 nm). For example,
Gower et al. (2006) used the MERIS Maximum Chlorophyll Index
(MCI (Gower, King, Borstad, & Brown, 2005)) to examine the radiance
signal at 709 nm relative to the neighboring wavelengths, and
Hu (2009) used the Floating Algae Index (FAI) to examine the MODIS
reflectance signal at 859 nm relative to the two neighboring bands at
645 and 1240 nm. Sargassum macroalgae cause increased MCI and FAI
values as compared with Sargassum-free waters, thus making delinea-
tion of these features straightforward. The advantage of FAI is that the
concept can be extended to Landsat TM and ETM+ as well as to the
most recent Operational Land Imager (OLI) onboard Landsat 8
(February 2013–present), leading to a Landsat FAI which can be used to
detect small features, as all these Landsat sensors have much higher spa-
tial resolution (30m) thanMODIS (250m) andMERIS (300m). Further-
more, FAI is less sensitive than other popular indexes (e.g., Normalized
Difference Vegetation Index or NDVI) to changes in atmospheric
conditions or solar/viewing geometry, thus making it easier to compare
images.
Fig. 1.MODIS/Terra FAI image on 1 July 2012 (14:15 GMT) over the centralWest Atlantic showi
glint mask. Although the spectral shapes of the large slicks do not appear similar to those of Tric
100% certainty that they are Sargassum macroalgae.
Based on the red-edge concept, time-series of Sargassum distribu-
tions in the GOM and Atlantic have been documented by Gower and
King (2011); and Gower et al. (2013) through analysis of MERIS data,
and near real-time FAI imagery for the GOM and central Atlantic have
been generated and updated daily at the University of South Florida
((Hu, Barnes, Murch, & Carlson, 2014); http://optics.marine.usf.edu,
under “Satellite Data Products” and “C Atlantic”, Fig. 1). These near
real-time FAI products have been used routinely by local environmental
groups to monitor potential Sargassum landing along the beaches of
Texas (Prof. Thomas Linton, University of Texas at Galveston, personal
comm.) and the Lesser Antilles Islands (Dr. Jean-Philippe Maréchal,
Caribbean Global Coral Reef Monitoring Network (GCRMN) advisor).
However, at least two limitations exist in these previous analyses and
near real-time data products.

First, Sargassum is not the onlymarine organism that causes elevated
red-edge reflectance. Other organisms or materials floating on the
surface, such as Trichodesmium and floating seagrass Syringodium can
all cause red-edge reflectance. Other floating materials such as marine
debris or garbage or emulsified oil (e.g., during the Deepwater Horizon
(DWH) oil spill in the GOM between April and July 2010, or from other
oil platforms) can lead to enhanced reflectance in all NIR wavelengths,
but not cause red-edge reflectance. Fig. 2 shows the typical reflectance
spectra from these materials, including the green macroalgae Ulva
prolifera found in the Yellow Sea and East China Sea (Hu et al., 2010b)
(the methods to collect these spectra are detailed in the section
below). All these different floatingmaterials show enhanced NIR reflec-
tance. Unless some a priori knowledge is available, it is currently difficult
to tell whether a delineated ocean feature is Sargassum or something
else. Hu, Cannizzaro, Carder, Muller-Karger, and Hardy (2010a)
ng surface slicks with enhanced NIR reflectance. Black color indicates land or clouds or sun
hodesmium (Hu et al., 2010b), due to lack of spectral resolution it is hard to concludewith

http://optics.marine.usf.edu


Fig. 2. (a) Surface reflectance spectra (R, dimensionless) of Sargassummats and nearbywatersmeasured in the GOMand off Bermuda. Note the local reflectanceminimumaround 632 nm
(black arrow) due to the chlorophyll c pigment absorption, and the enhanced reflectance between 580 and 650 nm (dotted circle) as compared with the reflectance below 550 nm. Re-
flectance plotted in red was measured from field collected Sargassum aggregated in a bucket on the ship deck, thus representing pure Sargassum endmember. (b)–(f) Surface reflectance
spectra for Trichodesmium, Ulva prolifera, emulsified oil, various garbagematerials, and seagrass Syringodium. See text formore details on how these spectrawere collected. For illustrative
purpose, reprehensive photographs are inset in each panel. The oil spectra were collected by AVIRIS with spectral signature around 1.2 and 1.7 μm (Clark et al., 2010).
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combined MODIS land and ocean bands to examine the spectral shape
in the blue and green wavelengths to diagnose whether an FAI-based
feature is due to Trichodesmium. This is because Trichodesmium has sev-
eral spectral signatures in the blue and green, making such “finger-
printing” possible. However, such finger printing of Trichodesmium is
possible only for some special caseswhere thefloatingmaterials occupy
a large or full portion of a satellite image pixel (see sensitivity analysis
below), and such a requirement can often not be met by MODIS
due to the 500-m and 1000-m resolution data used to examine the
spectral shape. Nevertheless, it is well understood that if a certain or-
ganism or material has unique spectral shapes, spectral finger printing
is possible. Sargassum also has some unique spectral features between
600 and 650 nm due to its chlorophyll c pigments (see below), yet
none of the multi-band ocean color sensors are equipped with several
spectral bands in this spectral range, making spectral discrimination
difficult.

Second, Sargassum patches can be very small, on the order of several
m2 or even smaller. Even the Landsat sensors at 30-mground resolution
may not be able to detect the small Sargassum patches. For example,
using 0.4-m resolution data collected by an airborne Portable
Hyperspectral Imager for Low-Light Spectroscopy (PHILLS) from south-
west Florida, Szekielda, Marmorino, Bowles, and Gillis (2010) reported
that only 2.3% of the ocean area was found to contain Sargassum, with
only 0.2% of the pixels containing full Sargassum coverage. Although
this is a case study for a limited area from which it is impossible to
generalize for the entire GOM or the Atlantic, the case study as well as
the analysis below does show that small Sargassum patches are
abundant, and they may not be detected by coarse-resolution sensors.
For the same reason, some or all delineated features may be a mixture
of floating materials and water, and an unmixing scheme may be
required to accurately estimate the Sargassum coverage (area) or
biomass.

During theDWHoil spill, a variety of remote sensing techniqueswere
used to assess the spill coverage and quantity (Clark et al., 2010;
Garcia-Pineda et al., 2013; Hu et al., 2011). These include the airborne
digital photographs andAirborneVisible-InfraRed Imaging Spectrometer
(AVIRIS) measurements. Depending on the flight altitude, they usually
have ground resolution of centimeters and meters, respectively. In
addition, the hyperspectral data collected by the Hyperspectral Imager
for the Coastal Ocean (HICO (Lucke et al., 2011)) sensor on the Interna-
tional Space Station (ISS) have been released, making it possible to
diagnose the spectral shape of the delineated features. However, these
measurements are irregular and their coverage is scarce; thus, they can
only be used for event response (in the case of AVIRIS) and demonstra-
tion of concepts (in the case of HICO). Routine assessment of the coastal
water environments using these hyperspectral measurements is not
possible.

The situation may be changed with a new mission currently being
planned by NASA. The mission is targeted to global ecosystems with a
particular emphasis on coastal zones, namely theHyperspectral Infrared
Imager (HyspIRI) mission (Devred et al., 2013). HyspIRI was originally
expected to be a hyperspectral sensor covering 380–2500 nm (10 nm
increments) with a ground resolution of 60 m, a swath width of
145 km, and an equatorial revisit frequency of every 19 days (Devred
et al., 2013) (Table 1). In 2014, a review conducted byNASA's Jet Propul-
sion Lab (JPL) in order to see how to support Sustainable Land Imaging
(SLI) for the next twenty-five years (a congressional mandate) pro-
posed new technology that would enable a Visible-Shortwave Infrared
(VSWIR) spectrometer with 30-m resolution, 185-km swath width,
and a 16-day revisit (Dr. Robert Green, JPL, personal comm.). Unlike
other precursors such as the Hyperion sensor on the EO-1 mission,
HyspIRI will be customized for its spatial and spectral resolutions as
well as its coverage and radiometric sensitivity, providing global data
with a particular focus on coastal zones. In this study, HyspIRI is
assumed to have the originally designed 60-m resolution.

Thus, given the availability of the multi-sensor data at various
ground resolutions and spectral resolutions and given the need to de-
sign and implement the HyspIRI mission, the objective of this study is
to provide recommendations on spectral and spatial requirements of fu-
ture hyperspectral satellite missions (including HyspIRI) in order to



Table 1
Space- and airborne data that were used in this study. These include data collected by MODIS, Landsat, HICO, AVIRIS, WorldView-2, and airborne digital photos. The specifications of the
HyspIRI mission are also provided in the last two rows.
Original specifications provided in Devred et al. (2013).

Sensor Spatial resolution Swath Spectral range Spectral resolution Revisit

MODIS 250–1000 m 2330 km 412–2130 nm Multi-band Near daily
Landsat 30 m 180 km 450–1640 nm Multi-band 16 days
HICO 90 m 45 km 350–1000 nm 5.7 nm Irregular
AVIRIS 8–15 m 20–40 km 350–2500 nm 10 nm Event response
WV-2 2 m ~17 km 400–1040 nm Multiband Irregular
Photologger cm b1 km RGB photo N/A Event response
HyspIRI* 60 m 145 km 380–2500 nm 10 nm 19 days
HyspIRIa 30 m 185 km 380–2500 nm 10 nm 16 days

a New specifications proposed more recently (Dr. Robert Green, JPL, personal comm.) Note that in this study the spatial resolution is assumed to be 60 m.
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effectively detect and quantify Sargassum, with the following two
questions to be addressed:

1) What are the optimal band centers and bandwidths required for
such a task?

2) What is the spatial detection limit once these spectral requirements
aremet? In otherwordswhat is theminimal Sargassumportion of an
image pixel that can be detected and spectrally differentiated?

The questions are addressed using two approaches. One is through
simulations using existing endmember spectra and realistic noise from
satellite-derived reflectance data, and the other is through comparison
of measurements by several different sensors in their capacity to detect
and quantify Sargassum, with specific focus on the spectral and spatial
resolutions. Although the focus is on Sargassum, these approaches are
also applicable to other floating materials.

The paper is organized as follows. The methods to collect and
process field, airborne, and satellite data are described first, followed
by themethods to perform the spectral analysis and spatial simulations.
Then, several image examples together with sample spectra are
inspected to demonstrate the possibility of using spectral shapes to
differentiate Sargassum from other floating materials and the impor-
tance of spatial resolutions. These demonstrations are then reinforced
by the results from the quantitative spectral analysis to show the
spectral requirements, and then followed by the spatial simulations to
understand the sensitivity of different sensors and atmospheric correc-
tion schemes on the Sargassumdetection limit. The concept of unmixing
is also illustrated usingWV-2 data and a linear unmixingmodel. Finally,
the implications of this study to data interpretation and future sensor
and algorithm design are discussed.

2. Data and method

2.1. Field data

The endmember reflectance spectra from a variety of floating algae
and materials were collected by different groups at different locations
following similar protocols. These include Sargassum in the GOM
and Atlantic (Fig. 2a), Trichodesmium in the Florida Keys (Fig. 2b),
U. prolifera in the Yellow Sea off Qingdao (China) (Fig. 2c), various
garbage materials from a field experiment in Tampa Bay (USA)
(Fig. 2e), and seagrass Syringodium in the Florida Keys (Fig. 2f).
Reflectance spectra from emulsified oil were not measured in the field
but collected by AVIRIS on 17 May 2010 during the DWH oil spill in
the northern GOM (Fig. 2d).

For the Sargassum endmember (Fig. 2a), in situ data of surface
reflectance of both Sargassum mats and nearby waters were taken
from opportunistic cruises. In September 2011, a cruise survey to the
NE GOMwas sponsored by the U.S. NOAA, where reflectance was mea-
sured using a hand-held above-water spectrometer (Spectrix) follow-
ing the NASA Ocean Optics protocols (repeated measurements of
water, sky, and a reference plaque) (Mueller et al., 2003). In order to col-
lect the pure Sargassum endmember spectra, Sargassum was collected
from the water and carefully put in a bucket full of water on the ship's
deck. The reflectance of Sargassum was then measured with the
Spectrix. On 23 January 2012, a 10 × 10 m Sargassum raft was encoun-
tered during a coral reef survey off Bermuda using a small boat. A
USB2000 (Ocean Optics Inc.) spectrometer was used to measure the
Sargassum and water reflectance against measurements of a standard
Spectralon reflectance plaque (Labsphere, Inc.). Measurements of Sar-
gassum and water were at a distance of ~1 m, and a total view area of
~0.1 m2. About 50 spectra each for Sargassum andwater were collected.
Of all these Sargassum spectra, the one collected from the GOM showed
the highest NIR reflectance, and therefore was chosen as the
endmember for the spectral analysis and spatial simulations. In such
simulations, the water endmember spectra were collected during a
NEGOM cruise in May 1999 (NEGOM5, see (Hu et al., 2003)) using the
same protocols above, with two spectra used to represent typical clear
and turbid waters in the GOM: one for chlorophyll a concentration
(Chla) of 0.14 mg m−3 (NEGOM5 line 11 station 18) and the other for
Chla of 0.80mgm−3 (NEGOM5 line 01 station 07). Their corresponding
absorption coefficients of colored dissolved organic matter (CDOM) at
443 nm were determined to be 0.012 and 0.050 m−1, respectively.

For the Trichodesmium endmember (Fig. 2b), surface reflectance
spectra were measured above a Trichodesmium patch floating on the
water surface in the Florida Keys (24.63°N, 81.08°W) on 1 July 1999
using a hand-held spectrometer (Spectrix) following the same proto-
cols as above. The spectrum shown in Fig. 2b was also used by Hu,
Cannizzaro, Carder, Muller-Karger, and Hardy (2010a) to compare
with MODIS-derived reflectance spectra.

For the Ulva endmember (Fig. 2c), surface reflectance spectra were
collected from a bloom patch floating on the water surface off Qingdao
in summer 2008 using a hand-held spectrometer following the same
protocols as above (He, Liu, Yu, Li, & Hu, 2011).

For the emulsified oil endmember (Fig. 2d), a description of the
AVIRIS data collection and processing is provided in the next section.

For the garbage endmember (Fig. 2e), a field experiment was con-
ducted in Tampa Bay during spring 2011 to measure the reflectance
spectra of various materials. These materials included gray plastic
trash bags, plastic water bottles, white polyfoam, and gray Styrofoam.
These materials are often found in marine garbage patches. During the
experiment, each type of material (with sufficient size to fill the field-
of-view of a hand-held spectrometer) was put in water, and collected
after their reflectance spectra were measured. In the simulations,
these spectra were averaged to represent a “mean” spectrum for the
garbage endmember.

For the Syringodium (seagrass) endmember, the spectrumwas taken
fromDierssen, Chlus, and Russell (2015), whomeasured the reflectance
of floating seagrass in the Florida Keys.

2.2. Airborne and satellite data

Table 1 provides a list of the space and airborne data that were used
in this study. These include data collected by MODIS, Landsat, HICO,
AVIRIS, WV-2, and airborne digital photographs. The proposed
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specifications of HyspIRI are also listed in Table 1. Because of their
different characteristics, they were processed differently.

AVIRIS data were obtained from the NASA JPL. During the DWH
oil spill, data from a total of 456 flight lines were collected between
6 May and 22 July 2010. The data were provided by JPL as geo-
referenced and calibrated radiance. Signal-to-noise ratios (SNRs)
between 0.6 μm and 1.7 μm of AVIRIS measurements are typically in a
range of 60:1–100:1 (Gao, 1993). Atmospheric correction using
the Tafkaa software (Gao, Montes, Ahmad, & Davis, 2000) was first
attempted to remove the atmospheric effects and derive the surface
reflectance. However, the resulting reflectance spectra often showed
negative values in the blue and green wavelengths for unknown
reasons. Therefore, total radiance (Lt) was used to examine the spectral
shapes of the visually identified features. One exception was the AVIRIS
data on 17 May, 2010, which was processed by the USGS to obtain
surface reflectance (data courtesy of Dr. Gregg Swayze, USGS).

Airborne photoswere collected during theDWHoil spill as part of an
effort to locate surface features including oil and Sargassum. These
photos were takenwhen certain features were identified by the observ-
er, thus representing subjective sampling in the NE GOM. However, the
low altitude and high resolution (estimated to be in the order of
centimeters) make them suitable to serve as ground reference data to
compare with the observations from other coarse resolution sensors.
After the DWH oil spill, an NSF-funded project supported objective
airborne mapping of Sargassum (Powers, Hernandez, Condon,
Drymon, & Free, 2013). These photos were available at and obtained
from NOAA. The data archive was searched to find concurrent (same
day) and co-located airborne and AVIRIS data. Due to the sparse nature
of both types of measurements, only 3 days (18 and 24 May 2010, 12
July 2010) revealed concurrent AVIRIS and airborne photo measure-
ments. Of these 3 days, only 5 of the 24 photos taken on 24 May 2010
showed Sargassummats through visual inspection.

MODIS and HICO data were obtained from NASA Goddard Space
Flight Center. The calibrated radiance (Lt(λ), whereλ is thewavelength)
wasfirst corrected for the two-way ozone absorption effect using ozone
data collected by the Total Ozone Mapping Spectrometer onboard the
Earth Probe spacecraft (or EPTOMS) or TIROS Operational Vertical
Sounder (or TOVS), and then converted to the total reflectance as
Rt(λ)= πLt(λ)/(Fo(λ)cos(θo)), where Fo(λ) is the solar constant adjust-
ed for Earth–Sun distance, and θo is the solar zenith angle. Then, contri-
bution fromRayleigh ormolecular scattering (Rr(λ))was removed from
the total reflectance, resulting in the Rayleigh-corrected reflectance:

Rrc λð Þ ¼ Rt λð Þ–Rr λð Þ: ð1Þ

Note that compared with the remote sensing reflectance (Rrs(λ),
sr−1) or surface reflectance (R(λ), dimensionless) after a full atmo-
spheric correction, Rrc(λ) is dimensionless and still contains the effects
of aerosol scattering, aerosol–Rayleigh interactions, and the two-way
transmittance from the sun to the target and from the target to the
sensor. Thus, Rrc(λ) is a result of partial atmospheric correction. The
reason to have a partial atmospheric correction is because it is difficult
to perform a full atmospheric correction over surface floating features,
as the enhanced reflectance in the NIR and SWIR will violate the
black-pixel assumption for the full atmospheric correction (Gordon,
1997). The resulting spectral Rrc data were map projected to an equi-
distant cylindrical (i.e., rectangular) projection for further analysis.

Landsat TM and ETM+ data were obtained from the U.S. Geological
Survey. The entire data archive was searched for the AVIRIS flight dates
in order to compare with AVIRIS observations. Due to the 16-day repeat
cycle and frequent cloud cover, concurrent (same day) and collocated
Landsat and AVIRIS data were available only on 24 May 2010. Landsat
Rrc data were derived in the same way as with MODIS and HICO. Note
that although Landsat-8 OLI data are also available from the USGS, the
data collection did not start until February 2013, and thus OLI data
were not used in this study.
WorldView-2 (WV-2) datawere obtained from theDigitalGlobe, Inc.
(DigitalGlobal Catalog ID 1030010003418B00), acquired on 8December
2009 at 15:08 GMT. WV-2 data have 8 spectral bands from 400
to 1040 nm at 2-m ground resolution. Bands 7 (770–895 nm), 5
(630–690 nm), and 3 (510–580 nm) were used to compose a
red-green-blue (RGB) image for visual inspection of suspect features.
The image was projected in UTM Zone 20 North. The projected across-
track scan distance is ~16.7 km. The total projected area of the image
is ~471.7 km2.

2.3. Visual inspection and comparison

There is currently no algorithm that can be used to differentiate the
various features automatically. The spectral shapes of suspect features
identified from the various types of imagery were therefore visually ex-
amined. These features were identified visually from the true-color red-
green-blue imagery and/or the FAI imagery, with their spectra extracted
using a softwarewritten in-house. For cross-sensor comparison, the im-
ages collected by different sensors were co-registered in the software
ENVI or Erdas Imagine, and then visually analyzed.

The concurrent Landsat and AVIRIS, and the concurrent AVIRIS and
airborne photos were also visualized to determine qualitatively how
different resolutions may affect Sargassum detection and quantification.

In addition to the above qualitative analysis and demonstration,
quantitative analysis using several indexes and numerical simulations
are used to understand the spectral requirements and spatial detection
limit in different situations. These methods are described below.

2.4. Definition of indexes

Several indexes were used in this study to differentiate various
endmembers. Most of these were developed and used earlier for
bloom detection, but two were defined in this study.

The first index is the FAI (Hu, 2009), developed to detect the red-
edge reflectance from both MODIS and Landsat. Because the field data
(Fig. 2) did not cover the spectral range in the SWIR where one band
is required to calculate FAI, FAI data products were generated from
MODIS and Landsat only, following the procedures of Hu (2009). FAI
is calculated using NIR reflectance referenced against a baseline formed
linearly between the red and SWIR bands. Mathematically, it is
expressed as:

FAI ¼ Rrc;NIR–Rrc;red– Rrc;SWIR–Rrc;red
� �

λNIR–λredð Þ= λSWIR–λredð Þ; ð2Þ

where the subscripts NIR, red, and SWIR represent the spectral bands.
For MODIS, λNIR = 859 nm, λred = 645 nm, λSWIR = 1240 nm. For
Landsat, λNIR = 660 nm, λred = 825 nm, λSWIR = 1650 nm. HICO is
not equipped with a SWIR band, and thus was not used to derive FAI
but used for spectral analysis.The second index is the NDVI, defined as

NDVI ¼ RNIR–Rredð Þ= RNIR þ Rredð Þ; ð3Þ

where R can be reflectance collected in thefield or derived from satellite
measurements (e.g., Rrc). In the absence of a SWIR band, NDVI can also
be used to delineate surface floating materials, but it is more prone to
perturbations due to variable aerosols, sun glint, and solar/viewing
geometry (Hu, 2009).

The third index is the Maximum Chlorophyll Index (MCI (Gower
et al., 2005)), defined as

MCI ¼ Rrc;709–Rrc;681– Rrc;754–Rrc;681
� �

709–681ð Þ= 754–681ð Þ; ð4Þ

where the numbers represent wavelength centers (in nm) of MERIS
bands. MCI was designed to measure the red-edge reflectance of both
water-column chlorophyll and floating vegetation, and has been used
extensively to map blooms of both types (Gower et al., 2006; Gower &
King, 2011; Gower et al., 2013).



Table 2
Reflectance noise (ΔRSTD) used in the sensitivity simulations for the 10-nm bandwidth
bands. See Eq. (7) and text for more information.

Band center (nm) ΔRstd (SeaWiFS) Rt,typical SNR (HyspIRI) ΔRstd (HyspIRI)

555 7.32E−04 6.90E−02 200 3.45E−04
605 5.07E−04 5.17E−02 200 2.59E−04
625 4.16E−04 4.60E−02 200 2.30E−04
645 3.26E−04 4.11E−02 200 2.06E−04
685 1.46E−04 3.34E−02 200 1.67E−04
755 7.59E−05 2.66E−02 200 1.33E−04
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The fourth index is the Sargassum Index (SI (Dierssen et al., 2015)),
defined as

SI ¼ Rr3=Rr2; ð5Þ

where “r3” is the wavelength of a local reflectance peak and “r2” is the
wavelength of a local reflectance trough. In Dierssen et al. (2015),
r3 and r2 were chosen as 650 and 630 nm, respectively, from field-
measured spectra. These wavelengths were optimized in this study
through determining band centers and band widths using spectra at
different resolutions.

The fifth index is the Line Depth (LD), defined as the wavelength in-
terval between the reflectance local trough and the two neighboring
local peaks:

LD ¼ Rr1 þ Rr3–Rr1ð Þ λr2–λr1ð Þ= λr3–λr1ð Þ–Rr2; ð6Þ

where “r1” is the local reflectance peak at a wavelength shorter than
“r2”. This design is similar to FAI, and can be used instead of SI for the
same argument when FAI is preferred over NDVI. Basically, a band sub-
traction is less sensitive to environmental perturbations than a band
ratio, because most of these perturbations tend to be spectrally flat
(e.g. (Hu, Lee, & Franz, 2012b)). The same line depth approach was
also used by Dekker (1993) and Qi, Hu, Duan, Cannizzaro, and Ma
(2014) to quantify cyanobacterial blooms because of the local absorp-
tion maximum around 625 nm by phycocyanin pigment. Note that for
the Sargassum endmember spectra in Fig. 2a, LD is positive.

Finally, a sixth index is defined as the red/green band ratio (RGR):

RGR ¼ Rr3=Rgreen: ð7Þ

where “green” is a wavelength near 555 nm. The reason to define this
index is to differentiate Sargassum from Trichodesmium because they
have opposite red/green ratios (Fig. 2a & b).

2.5. Spectral analysis to determine band centers and band widths

Thewavelengths corresponding to local Sargassum reflectance peaks
and troughs between 595 and 660 nm (Fig. 2a) were determined
through a derivative analysis (Hochberg, Atkinson, & Andréfouët,
2003). The peak wavelengths correspond to 0.0 in the first derivative
spectra and local maximum in the second derivative spectra. This
analysis was repeated three times for the same data but at the original
resolution (1 nm), 5-nm resolution, and 10-nm resolution. The reason
to use 10-nm resolution was because HyspIRI is expected to have
10-nm resolution continuous bands. The reason to use 5-nm resolution
was because another future satellitemission currently being planned by
NASA, namely the Geostationary Coastal and Air Pollution Events
(GeoCAPE)mission (Fishmanet al., 2012), is expected tohave 5-nmres-
olution continuous bands. The coarser-resolution datawere constructed
not through data binning of the 1-nm data but using a running mean
(with either 5- or 10-nm band widths) in order to determine the band
centers at these spectral resolutions.

Such determined band centers do not necessarily lead to the highest
index valueswhen these bands are used to calculate the various indexes
(Eqs. (3) – (7)). For example, because the reflectance trough around
630 nm in the Sargassum spectra is not equally spaced between the
two local maximum-reflectance wavelengths, the wavelength may be
shifted to result in a maximum LD value. To determine the optimal
band centers for each index, several iterations were used until a
maximum index value was reached. This sometimes resulted in
different band centers for different spectral resolutions even for the
same index, as shown below.
2.6. Sensitivity analysis for spatial resolution requirements: simulations

Without any data analysis, it is intuitive that the finer the spatial
resolution, the smaller the Sargassum patch that can be captured.
Thus, without knowing the size distribution statistics, it is difficult to
determine the “optimal” spatial resolution for Sargassum (and all
other features) detection. Indeed, this is nearly impossible to know
such statistics in the near future due to lack of high-resolution (sub
meter) data with sufficiently large coverage. Therefore, an alternative
waywas used to determine theminimum percentage Sargassum cover-
age (Pmin) in an image pixel with finite size (e.g., 60 × 60m2). Once Pmin

is determined, theminimal size of a Sargassum patch that can be detect-
ed by a specific sensor can be easily determined as a product of Pmin and
the sensor's spatial resolution.

Pminwas calculated bymixing the Sargassum andwater endmembers
at variable proportions (P from 0.0 to 1.0) while adding spectral noise
(ΔR):

Rmix ¼ P � Rs þ 1–Pð ÞRw þ ΔR; ð8Þ

where Rs is reflectance of the Sargassum (or other floating materials)
endmember and Rw is the reflectance of the water endmember. Then,
the three indexes (NDVI, LD, RGR) were calculated from each noise-
added spectrum. For each spectrum of the Sargassum-water mixture,
1000 noise values for each band were added. These simulated noise
values were spectrally independent, following a Gaussian distribution
with a zero mean and the standard deviation (ΔRSTD) given by two
scenarios.

Thefirst scenario usedΔRSTD derived frommeasurements of the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) over the North Atlantic
(Table 3 in Hu, Feng, & Lee (2013), values in the parenthesis for
Chla = 0.15 mg m−3). These noise values were assumed typical from
satellite ocean color measurements over clear waters. They represent
the lower bound from the standard atmospheric correction currently
used by NASA (Gordon, 1997), because the noise could be higher for
coastal waters (Moore, Campbell, & Feng, 2014). For wavelengths not
available on SeaWiFS, linear interpolation was used. The noise values
in reflectance units (dimensionless) are listed in the second column of
Table 2.

The second scenario used noise values expected from HyspIRI
measurements under “typical” measurement conditions. The top-of-
atmosphere (TOA) radiance (Lt,typical) over clear waters measured by
any satellite sensors is provided in Table 4 of Hu et al. (2012a) for
solar zenith angle (SZA) of 45°. Lt,typical was converted Rt,typical. Then, as-
suming a signal-to-noise ratio (SNR) of 200:1 for all spectral bands of
HyspIRI under typical radiance input over clear waters, ΔRSTD was
then derived as Rt,typical/SNR. Such derived ΔRSTD is listed in the last col-
umn of Table 2. The 200:1 assumption was based on HICO measure-
ments over clear waters (Hu, Feng, et al., 2012a), and it is about three
times higher than AVIRIS measurements (Gao, 1993). Note that in this
scenario the surface reflectance of all endmember spectra in Fig. 2
were increased by 0.02 for all wavelengths in order tomimic Rrc derived
from satellite measurements. The addition of 0.02 was to approximate
aerosol reflectance corresponding to typical aerosol optical thickness
of 0.08 for the North Atlantic. Note that this is a simple approximation,
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as aerosol reflectance in reality does have spectral curvature following
λ−n where n is typically 0.7 for the global ocean (Hu, Lee, & Franz,
2012b). This scenario was used because for floating materials atmo-
spheric correction is often difficult due to the non-zero water signal in
the NIR and SWIR, making a partial atmospheric correction to derive
Rrc more practical (Hu, 2009).

For each index, a statistical significance test was performed for the
difference between the simulated Sargassum-water mixed spectra and
other spectra. In the test, if the means differed by more than two
standard deviations, then the two classes were regarded as significantly
different in that index.

2.7. Spatial mixing and unmixing experiment using WV-2 data

The original WV-2 image at 2-m resolution was spatially binned
(simple averaging) to 60-m resolution to evaluate whether some of
the Sargassum features would disappear. Then, spatial unmixing was
used to determine the actual Sargassum coverage from the coarse-
resolution mixed pixels. Once a certain feature is determined to be
Sargassum, a linear unmixing model can be used to determine the
Sargassum proportion in each coarse pixel. In mixing water and
Sargassum, the field-measured reflectance spectra were first convolved
to MODIS bands. Then, 100,000 random pairs were made from the 50
Sargassum and 50 water spectra, with their relative weights (P and 1-P,
see Eq. (8)) randomly selected to linearly mix the spectra in each pair.
For the unmixing, a generalized linear model was fitted to 200 of the
100,000 mixed spectra (chosen randomly), then applied to all 100,000
spectra. In practice, both the water and the Sargassum endmembers
may have spectral variability, and satellite-derived reflectance may also
contain uncertainties (see above), leading to increased uncertainties
from this simplified model. The model is presented here, however, to
show the basic concept that unmixing pixels is possible once spectral
endmembers are defined.

3. Results

In this section, qualitative analysis such as spectral inspection and
visual comparison between images of different resolution is first
performed. Then, quantitative results through spectral analysis and
numerical simulations are presented.

3.1. Spectral inspection and interpretation

Fig. 1 shows an example of theMODIS FAI images, generated in near
real-time every day from both Terra and Aqua for several regions
including the GOM, central West Atlantic, and Bermuda (Hu et al.,
2014; http://optics.marine.usf.edu). The image in Fig. 1 shows the
coverage of the central West Atlantic from the Amazon River mouth
to the north of the Lesser Antilles Islands. The image reveals many sur-
face slicks. Spectral analyses of some of the dense features by combining
the MODIS land and ocean bands (Hu, Cannizzaro, Carder, Muller-
Karger, & Hardy, 2010a) did not reveal spectral curvatures in the blue-
green wavelengths similar to those of Trichodesmium, suggesting that
these dense features were not Trichodesmium. They could be Sargassum
or other types of floating materials (e.g., tree leaves or small branches,
marine debris, etc.). Similar spectral analyses could not be applied to
other less dense slicks as the spectral signatures of various algae or
materials may disappear in mixed pixels (see below).

Gower et al. (2013) examined these features using the MERIS MCI,
and speculated that the regular landing of Sargassum on the beaches
of the Lesser Antilles Islands possibly originated from the central
Atlantic near the Amazon. However, MCI is based on the 709-nm
MERIS band, and the large MCI values are not unique to Sargassum.
Indeed, all floating materials on the surface would cause elevated
709-nm reflectance and thus elevated MCI values. Unfortunately, al-
though a handful of published papers in either refereed or gray literature
show field-measured Sargassum reflectance spectra (Dierssen et al.,
2015; Suwandana, Kawamura, Sakuno, Evri, & Lesmana, 2012), neither
MERIS nor MODIS is equipped with sufficient spectral bands to resolve
the spectral curvature around 632 nm for Sargassum (Fig. 2a). Together
with the coarse resolution (250 or 300 m), such a lack of spectral
bands makes it difficult to spectrally fingerprint these features. Such a
difficulty can be overcome with hyperspectral measurements from
space-borne and airborne sensors with appropriate spatial resolutions,
as shown below.

Fig. 2a shows the typical reflectance spectra of Sargassum in both the
GOM and off Bermuda. Also shown in the figure are two representative
reflectance spectra from the GOMclear and turbidwaters. In addition to
the common enhanced reflectance at N700 nm (similar to the reflec-
tance for all other floating materials), there are two spectral features
that could be used to differentiate Sargassum from other materials.
The first is the local reflectance minimum around 632 nm due to the
chlorophyll c (both c1 and c2) pigments. These pigments have a local
absorption peak between 610 and 665 nm, with a full-width-half-
maximum (FWHM) of about 25 nm and maximal absorption around
636 nm (Bidigare, Ondrusek, Morrow, & Kiefer, 1990). Such absorption
properties lead to a local reflectanceminimumat 632 nm(annotated by
an arrow) and maxima at 620 and 647 nm. The second is the enhanced
reflectance between 580 and 650 nm (outlined by the dotted circle), as
compared with the reflectance of water in the same spectral region or
compared with reflectance of the same feature at b550 nm. This is
due to the absorption of fucoxanthin pigment between 400 and
600 nm (absorption peak around 500 nm with a FWHM of 100 nm)
(Bidigare et al., 1990). The enhanced 580–650 nm reflectance is why
Sargassum appears brownish. In contrast, although cyanobacteria such
as Trichodesmium can also form surfacemats to cause a local reflectance
minimum around 625 nm (annotated by an arrow) due to the phycocy-
anin (PC) pigment (Dekker, 1993; Qi et al., 2014), cyanobacteria
mats do not have the brownish color or enhanced reflectance in the
580–650 nm region (Fig. 2b). Furthermore, the FWHM of PC absorption
(75 nm) is much wider than chlorophyll c absorption, leading to
subtle difference in the local reflectance curvature. The greenmacroalga
U. prolifera does not have the 632-nm feature either, and it shows
enhanced reflectance in the green (~555 nm) as compared to the
580–650 nm region (Fig. 2c He et al., 2011). Likewise, the seagrass
Syringodium does not have either the 632-nm feature or the enhanced
reflectance between 580–650 nm (Fig. 2f). Other floating materials
such as emulsified oil (Fig. 2d) or marine garbage (Fig. 2e) do
not show the 632-nm reflectance minimum although they show
enhanced reflectance between 580–650 nm as compared with
reflectance in the green. Thus a reflectanceminimum at 632 nmand en-
hanced reflectance between 580 and 650 nm should be able to discrim-
inate Sargassum from other floating materials once hyperspectral data
are available.

Fig. 3a shows such an example from HICO. The image was acquired
on the same day, but separated by 2 h from a MODIS collection. The
RGB image was generated from three bands using the HICO Rrc data.
Sample spectra were extracted from the visually identified slick
features, and are shown in Fig. 3b. To remove the residual atmospheric
effects from the partially corrected Rrc data, the differences between the
slick features and nearbywater are shown in Fig. 3b. Comparedwith the
field-collected reflectance spectra of Sargassum in Fig. 2a, the Rrc spectra
of the slick feature in Fig. 3a show decreased magnitudes in all spectral
range, possibly due to the fact that the 90-m HICO pixel is mixed water
and Sargassum, or Sargassum is slightly submerged in water. Neverthe-
less, the Rrc spectra in Fig. 3b clearly show 1) elevated values between
580 and 650 nm and 2) local reflectance minimum around 632 nm.
These are all characteristics of Sargassum as opposed to other floating
materials, as interpreted from all endmember spectra shown in Fig. 2.
Thus, without concurrent field validation, the spectral inspection
revealed that at least some of the MODIS-identified FAI features in
Fig. 1 are most likely Sargassum slicks.

http://optics.marine.usf.edu


Fig. 3. (a) HICO RGB image on 1 July 2012 (12:20 GMT) showing clouds and surface slicks of suspect features. This portion of the projected HICO image covers the area 6.468°N–6.816°N
and 51.494°W–51.047°W in the centralWest Atlantic (inset figure). Note that the imagewas collected on the same day as theMODIS/Terra image in Fig. 1. (b) HICO Rrc spectra from three
pixels of the suspect feature outlined in the red box of (a), referenced against the nearby clear water. The spectral shape between 600 and 650 nm mimics that of Sargassum due to
chlorophyll c pigment absorption (Fig. 2a).
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Similar toHICOmeasurements, AVIRIS data collected over the north-
ern GOM may also be used to differentiate Sargassum from other fea-
tures. Fig. 4 shows several AVIRIS flight lines on 24 May 2010 in the
west of the Mississippi Bird-Foot Delta in response to the DWH oil
spill. The RGB image, generated using un-projected Lt data, shows
Fig. 4.AVIRISflight lines on 24May 2010 overlaid on theGoogle-Earth background image coveri
the left as an RGB image (generated using un-projected Lt data). The spectral shapes of the sur
around 625 nm and 670 nm are annotatedwith the green arrows. These spectra were extracted
on the background shows the footprint of the Landsat coverage, and the black/white dots deno
several suspect slicks. It was unclear whether these slicks were
Sargassum, Trichodesmium, or emulsified oil. Spectral analyses indicated
that these slicks were not Trichodesmium because they did not show the
typical maxima and minima in the blue-green wavelengths (Hu,
Cannizzaro, Carder, Muller-Karger, & Hardy, 2010a). The slicks did not
ng thewest of theMississippi Bird-Foot Delta. A portion of the oneflight line is displayed to
face slicks were analyzed, with examples shown in the inset figure, where local minimum
from single pixels, but their nearby pixels showed nearly identical spectra. The red square
te locations of the Landsat-identified features (thought to be Sargassum).
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appear as emulsified oil either, because they did not show the oil-
specific features around 1.7 and 2.1 μm (Clark et al., 2010). Instead,
two local minima around 625 nm and 670 nm were found from the
spectra. In addition, compared with the spectra of nearby water, the Lt
signal between 580 and 650 nmwasmuch higher. These are all charac-
teristics of Sargassum. Although the sample spectra in Fig. 4b were ex-
tracted from single pixels, their nearby pixels showed nearly identical
spectra. Thus, even without field measurements, one may conclude
that no other known organism or material would have such spectral
shapes, and the slicks are most likely Sargassum.

Although the spectral shapes of the visually identified features can
be used to differentiate Sargassum from other floating materials, it is
not straightforward to establish classification rules from the AVIRIS
measurements. Although the 625-nm local minimum is a unique signa-
ture for Sargassum (after ruling out the possibility of Trichodesmium), its
spectral contrast is not as apparent as the 670-nm minimum, possibly
due to the non-optimal band locations of the 10-nm bands and mixed
pixels (see spectral analysis below). Thus, once the possibilities of
Trichodesmium and emulsified oil are ruled out through visual inspec-
tion of the spectral shapes and the 625-nm feature is found from at
least some pixels of the feature, a simple rule of Lt(704) N Lt(675) can
be established to delineate the slicks within this region of interest
(ROI). Fig. 5 shows the results of applying such a classification rule to
the ROI of the AVIRIS image. Overall, a total of 1580 AVIRIS pixels
were classified as containing Sargassum. At a ground resolution of
12.2 × 12.2 m2, this corresponds to an area of 235,167 m2. Note that
the same rule also discarded the cloud pixels. Tests of this approach
(spectral analysis + ROI + simple rule) over several other cases also
showed similar success. Thus, although the rule cannot be applied
blindly to the entire image, the pre-processing of the image using
spectral analyses and ROI can be used before the rule is applied.
Fig. 5. (a) AVIRIS RGB image on 24 May 2010 near the Mississippi Bird-Foot Delta showing sur
same image as shown in Fig. 4. (b) Delineation of the Sargassum slicks using the rule of Lt(704) N
equivalent to 1580 × 12.2 × 12.2 = 235167 m2 in Sargassum coverage. The inset figure shows
In short, the hyperspectral capacity of a HICO-like or AVIRIS-like sen-
sor wouldmake it possible to fingerprint Sargassum in the remote sens-
ing imagery. Although visual inspection is required, in the future some
generalized rules may be developed to automate the process. In the
absence of hyperspectral capacity, once a certain floating feature is
identified using either NDVI, FAI, or MCI, three spectral bands around
600, 625, and 650 nm may be placed on satellite or airborne sensors
to help identify the local spectral feature to differentiate Sargassum
from other look-likes. The exact band centers may vary with spectral
resolution (see below), however. An additional band in the green can
also help differentiate Sargassum from Trichodesmium mats or floating
seagrass Syringodium, as the latter two have enhanced reflectance in
the green.

3.2. Spatial inspection and interpretation

For detecting and quantifying surface features such as Sargassum,
spatial resolution is another major limiting factor in at least three as-
pects. One, an image pixel may be mixed with Sargassum and water
(mixed pixels), leading to potential errors when using pixel numbers
to estimate the total area coverage. Two, small Sargassum patches may
be completely missed in coarse-resolution images. Finally, the mixed
pixel may lose the spectral signature, making it difficult to classify the
surface feature. These three aspects indicate different outcomes due to
the same limitation. Here we use Landsat, AVIRIS, airborne photos,
and a WV-2 image to demonstrate the first two factors, while the last
factor is shown in the numerical simulation below.

Fig. 6 compares Sargassum coverage estimated from the same day and
co-located Landsat and AVIRIS data collected on 24 May 2010. Note that
the AVIRIS image is the same as shown in Fig. 5. For the common area
outlined in red where Landsat pixels may contain both Sargassum and
face slicks, which were regarded as Sargassum according their spectral shapes. This is the
Lt(675) for this particular region. A total of 1580AVIRIS pixelswere classified as Sargassum,
the location and orientation of the AVIRIS image.



Fig. 6. (a) Landsat FAI image collected on 24 May 2010 showing surface slicks of Sargassum. The footprint of the entire Landsat image is shown in Fig. 4. The white rectangle
shows the footprint of the corresponding AVIRIS measurement (location and orientation shown in Fig. 5). (b) AVIRIS RGB image collected on the same day (Run 06,
f100524t01p00r06rdn_b_sc01_ort_img). The red circles on the two images outline common surface features where Landsat Sargassum pixels may be mixed with Sargassum and water
(i.e., mixed pixels). (c) Sargassum pixels delineated from the Landsat image. (d) Sargassum pixels delineated from the AVIRIS image. Note that some of theAVIRIS-identified Sargassum pixels
are completely missing in the Landsat image (i.e., missing pixels).
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water, Sargassum coverage was estimated as 120 pixels × 30 m ×30 m /
0.83 = 130,120 m2 (the factor of 0.83 is to take into account the missing
Landsat pixels due to striping caused by the failure of the Scan-Line-
Corrector). In comparison, Sargassum coverage estimated from AVIRIS
was 781 pixels × 12.2 m × 12.2 m = 116,244 m2. Thus, the ratio of the
two estimates is Landsat/AVIRIS = 112%, suggesting that Landsat
overestimated Sargassum coverage by 12% due to its coarser pixels. For
the entire AVIRIS image, however, the Sargassum coverage from AVIRIS
and Landsat measurements was estimated as 1580 pixels × 12.2 m ×
12.2 m = 235,167 m2 and 187 pixels × 30 m × 30 m / 0.83 =
202,771m2, respectively. The ratio of Landsat/AVIRIS Sargassum coverage
for the entire image is 86.2%, suggesting that overall Landsat
underestimated Sargassum coverage by 13.8% when all factors were
considered (mixed pixels, coarse resolution, missing pixels).

Fig. 7 shows another example of Landsat and AVIRIS comparison in
their Sargassum coverage estimates. The Landsat image is the same as
shown in Fig. 6 but a different portion was used to correlate with
AVIRIS data collected on the same day. For the area outlined in red,
Landsat-based Sargassum coverage was estimated as 232 pixels ×
30m× 30m=208,800m2, while AVIRIS-based coverage was estimat-
ed as 1198 pixels × 12.2 m × 12.2 m = 178,310 m2. Thus, for
this common area Landsat overestimated Sargassum coverage by 17%
(=(208,800 − 178,310) / 178,310). However, when the entire AVIRIS
image was used, the Sargassum coverage from Landsat and AVIRIS
measurements was estimated as 525 pixels × 30 m × 30 m / 0.964 =
472,500 m2 (Landsat has ~3.6% missing pixels due to striping)
and 2592 × 12.2 m × 12.2 m = 385,793 m2, respectively. Landsat
overestimated Sargassum coverage by 27% as compared with AVIRIS
estimates.
Ideally Landsat/AVIRIS comparison should be performed for at least
several other days to generate statistics. However, due to the sporadic
nature of both measurements, the above two examples were the only
cases where concurrent (same day) Landsat and AVIRIS were available.
Based on the limited statistics from the above two examples, Landsat es-
timates of Sargassum area coverage agrees with AVIRIS to within±30%.
In otherwords, the 30-m resolution Landsat appears to be able to detect
and quantify Sargassum coverage with ±30% uncertainties, if AVIRIS
measurements were regarded as the “truth”. However, such an
uncertainty does not include those potential small Sargassum patches
missed by AVIRIS due to inadequate resolution. Such possibilities were
evaluated by comparing AVIRIS and concurrent airborne photographs,
as shown below.

Fig. 8a shows the locations of 24 airborne photographs taken on 24
May 2010, all to the west of the Mississippi delta and covered by
AVIRIS flight lines on the same day. Of the 24 photographs, 5 showed
Sargassummats (Fig. 8c & d). However, AVIRIS data from the same loca-
tions, after careful inspection of the spatial contrast and spectral shapes,
did not reveal any suspect features. These small Sargassumpatcheswere
therefore completely missed by the 12-m resolution AVIRIS data. Two
other cases were also examined to see whether this observation could
be generalized. On 18 May 2010 and 12 July 2010, concurrent AVIRIS
flight lines and airborne photos were examined. Unfortunately, of the
29 photographs taken on May 18 and 17 photos on July 12, none
showed any signs of Sargassum.

Similar results were found from the WV-2 observations (2-m
resolution) when compared with concurrent MODIS imagery (250-m
resolution). Fig. 9a shows the RGB composite of the WV-2 image near
Bermuda on 8 December 2009, where many slicks of Sargassum-like



Fig. 7. (a) AVIRIS RGB image collected on 24 May 2010 (Run 05, f100524t01p00r05rdn_b_sc01_ort_img) in the west of the Mississippi Bird-Foot Delta. The areas outlined in red contain
surface slicks that appear as Sargassum. (b). Landsat FAI image collected on the same day showing slicks in the red outlined area. The white rectangle shows the AVIRIS footprint.
(c) Sargassum pixels delineated from the AVIRIS image. (d) Sargassum pixels delineated from the Landsat image. The red circles in (a) and (b) outline common surface features where
both AVIRIS and Landsat Sargassum pixels may be mixed with Sargassum and water (i.e., mixed pixels, and this is why the slick features appear weak on both images). Elsewhere,
some of the AVIRIS-identified Sargassum pixels are completely missing in the Landsat image (i.e., missing pixels).
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features can be visualized. One such feature, shown in box 3, is also
captured by the MODIS/Terra FAI image on the same day (Fig. 9b).
However, the slicks in boxes 1 and 2 are completely missed by the
250-m resolution MODIS FAI image due to the coarse resolution, sug-
gesting that MODIS imagery can capture only large-scale Sargassum
slicks of at least several meters in slick width. Using a simple linear
unmixing scheme, Hu (2009) estimated that the lower-detection limit
of MODIS in capturing floating macroalgae slicks is 5–10 m in slick
width and at least several pixels in slick length. The requirement of sev-
eral pixels in slick length is to increase confidence in feature detection, as
a single outlier pixel with enhanced reflectance is often treated as noise.
3.3. Spectral requirements for Sargassum detection

Recently, Dierssen et al. (2015) used the airborne Portable Remote
Imaging Spectrometer (PRISM) imagery at 1-m resolution (350–
1050 nm at 3.1-nm resolution, 1240 and 1610 nm at 20-nm resolution)
to assess the spectral properties of Sargassum rafts and aggregations of
seagrass (Syringodium filiforme) wrack in the Greater Florida Bay.
Based on the inspection of the spectral reflectance, they proposed a
two-step scheme to detect Sargassum: the floating feature is first
identified using NDVI, and a 650/630 band ratio is then used to
differentiate Sargassum from Syingodium because the latter does not
show the spectral curvature around 630 nm.

The derivative analysis in this study identifiedwavelength centers at
602, 632, and 647 nm for the spectral feature around 630 nm for
Sargassum (Fig. 2a) when the spectral resolution are 1 or 5 nm. Howev-
er, when calculating the LD index, the best combinations are (602, 623,
647), (602, 622, 647), and (605, 625, 645) for the spectral resolutions of
1, 5, and 10 nm, respectively. This suggests that when the satellite sen-
sor has continuous 5-nm bands (e.g., GEO-CAPE), the three bands
should be centered at 602, 622, and 647 nm. When the satellite sensor
has continuous 10-nm bands (e.g., HyspIRI), the three bands should
be centered at 605, 625, and 645 nm instead.

The various indexes defined in Eqs. (3)–(6) were derived from the
endmember spectra in Fig. 2 using all three resolutions, with results
presented in Table 3 (note the difference in band center selections). Of
all these floating materials, Sargassum can be differentiated unambigu-
ously using the following step-wise rules:

1) NDVI N 0 (floating materials);
2) LD N 2 × 10−3 (spectral curvature around 630 nm to rule out the

possibility of Syringodium, emulsified oil, and garbage);
3) RGR N 1 (to rule out the possibility of Trichodesmium, Syringodium,

and Ulva).



Fig. 8. (a) AVIRIS lines (horizontal strips) on 24 May 2010 overlaid in Google Earth, where Landsat-identified Sargassum locations are annotated as dots and airborne photo locations are
annotated as squares. (b) Zoom in of 24 airborne photo locations. Note that all locations are covered by AVIRIS flight lines. (c) and (d): Airborne photos show Sargassummats at 9:02 am
and 9:15 am (local time), respectively. In total, 5 of the 24 photos showed Sargassum mats, which were completely missed by the AVIRIS measurements due to the coarser resolution.

Fig. 9. (a) Color-infraredWV-2 image (2-mresolution) on8December 2009 aroundBermuda showing various slicks thought to be Sargassum. The three boxes are zoomed in to the right to
show the slick features. (b) MODIS/Terra FAI image (250-m resolution) on the same day shows surface slicks that are thought to be Sargassum. The slick annotated by the yellow arrow
corresponds to the WV-2 slick in box 3.

240 C. Hu et al. / Remote Sensing of Environment 167 (2015) 229–246



Table 3
Spectral discrimination indexes (Eqs. (3)–(6)) calculated from endmember spectra of different floating materials (Fig. 2) for 3 resolutions. The band centers for each resolution are listed
separately. Sargassum can be identified unambiguously using the criteria of NDVI N 0, LD N 2× 10−3, andRGR N 1. The individual indexesmeeting these criteria are colored in red.Note that
oil has higher SI and RGR than Sargassum, thus it is impossible to use the two indexes alone to differentiate Sargassum from oil.

Features 1-nm resolution bands (nm) 5-nm resolution bands (nm) 10-nm resolution bands (nm)

NDVI
(685, 755)

LD
(602, 623, 647)

RGR
(555, 647)

SI
(633, 646)

NDVI
(685, 755)

LD
(602, 622, 647)

RGR
(552, 647)

SI
(632, 647)

NDVI
(685, 755)

LD
(605, 625, 645)

RGR
(555, 645)

SI
(635, 645)

Sargassum 0.47 6.71E−03 1.19 1.07 0.47 6.49E−03 1.25 1.07 0.46 5.72E−03 1.21 1.05
Tricho 0.56 3.54E−03 0.77 1.01 0.56 3.50E−03 0.79 1.00 0.55 3.00E−03 0.78 1.00
Syringodium 0.77 −3.34E−03 0.48 0.73 0.77 −2.71E−03 0.49 0.71 0.76 −3.08E−03 0.52 0.79
Ulva 0.71 −1.46E−03 0.38 0.80 0.71 −1.42E−03 0.38 0.78 0.71 −1.28E−03 0.40 0.84
Oil 0.26 −1.05E−03 2.63 1.18 0.26 −9.24E−04 2.77 1.21 0.26 −1.16E−03 2.67 1.13
Garbage 0.01 −8.21E−04 1.12 1.01 0.01 −6.33E−04 1.12 1.01 0.00 −1.11E−03 1.12 1.01
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For an environment free of emulsifiedoil and garbage, a similar set of
rules through the use of SI can also be established to differentiate
Sargassum from other floating materials:

1) NDVI N 0 (floating materials);
2) SI N 1 (to rule out the possibility of Syringodium and Ulva);
3) RGR N 1 (to rule out the possibility of Trichodesmium and Ulva).

Note that it would be difficult to use the original two-step rules
proposed by Dierssen et al. (2015) (i.e., NDVI N 0, SI N 1.0) to differentiate
Sargassum from Trichodesmium even in the absence of emulsified oil and
garbage.

In practice, if some type of a priori knowledge is available, these rules
may indeed be relaxed and simplified. For example, if in a certain region
there is no emulsified oil or garbage (or these two possibilities can be
ruled out usingMCI asMCIwould have lowvalues due to their relatively
smooth reflectance at N700 nm, Fig. 2d & e), a combination of NDVI and
RGR would be sufficient to differentiate Sargassum from Trichodesmium
or Syringodium or Ulva. Likewise, when some other possibilities
are ruled out, the rules to differentiate other endmembers may be
established in a similar fashion from Table 3.

One interesting result is that although the magnitude of LD for
Sargassum decreased by 12–15% when the resolution was changed
from 1 nm (or 5 nm) to 10 nm, its magnitude relative to Trichodesmium
remained rather stable (LD ratio between the two remained to be
Table 4
Three indexes estimated with different percentage of water (for both Chla= 0.14 mgm−3 (a)
wasused to simulate thenoise and then added to themixed reflectance spectra (Eq. (8)).Wat:w
in the tables are themean values from1000 simulations, except that the columns of “Sar” are th
of Sargassum are significantly greater than their corresponding thresholds (NDVI N 0, LD N 0, and
inated. For turbid waters (Chla = 0.8) this detection limit is 30:70 for Sargassum:water.

Wat (%) NDVI LD

Sar Tri Ulv Syr Gar Oil Sar Tri Ulv

Chla = 0.14 mg m−3 for water endmember
95% 0.10 0.03 0.12 0.24 −0.0063 0.08 −1.66E−04 1.77E−04 −6.78E−
90% 0.18 0.06 0.21 0.37 −0.0038 0.12 1.81E−04 2.83E−04 −7.97E−
85% 0.23 0.09 0.28 0.45 −0.0023 0.14 4.97E−04 3.98E−04 −1.47E−
80% 0.26 0.11 0.33 0.50 −0.0014 0.16 8.66E−04 5.21E−04 −2.04E−
75% 0.29 0.13 0.37 0.54 −0.0005 0.16 1.19E−03 6.16E−04 −2.91E−
70% 0.31 0.15 0.40 0.56 0.0001 0.17 1.52E−03 7.47E−04 −3.41E−
65% 0.33 0.17 0.43 0.59 0.0005 0.18 1.89E−03 8.66E−04 −4.04E−
60% 0.34 0.19 0.45 0.60 0.0009 0.18 2.22E−03 9.85E−04 −4.65E−
55% 0.35 0.20 0.47 0.62 0.0013 0.18 2.59E−03 1.10E−03 −5.32E−

Chla = 0.8 mg m−3 for water endmember
95% 0.09 0.01 0.11 0.23 −0.0170 0.08 −1.03E−04 2.40E−04 5.92E−
90% 0.17 0.05 0.20 0.36 −0.0122 0.12 2.23E−04 3.51E−04 −1.16E−
85% 0.22 0.08 0.27 0.44 −0.0091 0.14 6.04E−04 4.64E−04 −8.01E−
80% 0.26 0.10 0.32 0.49 −0.0067 0.15 8.82E−04 5.56E−04 −1.69E−
75% 0.28 0.12 0.36 0.53 −0.0048 0.16 1.25E−03 6.84E−04 −2.22E−
70% 0.30 0.14 0.39 0.56 −0.0035 0.17 1.56E−03 7.97E−04 −2.92E−
65% 0.32 0.16 0.42 0.58 −0.0025 0.17 1.94E−03 8.98E−04 −3.70E−
60% 0.34 0.18 0.45 0.60 −0.0016 0.18 2.26E−03 1.02E−03 −4.34E−
55% 0.35 0.19 0.47 0.62 −0.0009 0.18 2.62E−03 1.13E−03 −5.00E−
1.85–1.91). Therefore, spectral resolutions from 1 nm to 10 nm would
perform similarly for this purpose. For the expected HyspIRI spectral
coverage and resolution, the following six 10-nm bands centered
at 555, 605, 625, 645, 685, and 755 are recommended for optimal
performance when the 3-step rules are used to detect and differentiate
Sargassum from other floating materials. Here both FAI (with an addi-
tional band in the SWIR, e.g., 1240 nm) and MCI can be used to replace
NDVI in the above steps for their tolerance to the environmental pertur-
bations. If for any reasons during the engineering design the 10-nm
bands were centered at different wavelengths, although the influence
on the NDVI and RGR would be negligible, the sensitivity of using LD
for Sargassum discrimination may be degraded. For example, if the
three band centers are placed at 600, 620, and 650 nm, LD for Sargassum
and Trichodesmium would be 4.82 and 3.32 × 10−3, respectively. Not
only is the magnitude of LD much smaller (from 5.72 to 4.82, a 16%
decrease), but the LD ratio between Sargassum and Trichodesmium is
also decreased significantly (from1.91 to 1.45, a 24% reduction). Clearly,
even with a fixed spectral resolution, the band centers need to be
chosen carefully.

3.4. Spatial detection limit

Using the simulation methods detailed in Section 2.6, the detection
limits are listed in Table 4. For brevity, only the results from the second
and 0.8 mgm−3 (b)) mixed with other floatingmaterials, whereΔRstd(HyspIRI) of Table 2
ater; Sar: Sargassum; Tri: Trichodesmium; Syr: Syringodium; Gar: Garbage. All values shown
emean valuesminus 2 times of standard deviations. At 80%watermixing, all three indexes
RGR N 1), suggesting that a 20:80 Sargassum:watermixture can still be spectrally discrim-

RGR

Syr Gar Oil Sar Tri Ulv Syr Gar Oil

06 −9.64E−05 2.43E−06 1.60E−04 0.84 0.78 0.76 0.76 0.87 1.03
05 −2.60E−04 −6.33E−05 2.52E−04 0.91 0.77 0.74 0.74 0.92 1.22
04 −4.18E−04 −1.22E−04 3.51E−04 0.96 0.76 0.71 0.72 0.95 1.38
04 −5.64E−04 −1.71E−04 4.60E−04 1.00 0.76 0.69 0.70 0.98 1.51
04 −7.41E−04 −2.50E−04 5.39E−04 1.04 0.75 0.68 0.69 1.00 1.63
04 −8.82E−04 −2.92E−04 6.55E−04 1.07 0.74 0.66 0.68 1.02 1.73
04 −1.03E−03 −3.46E−04 7.58E−04 1.10 0.74 0.65 0.67 1.03 1.81
04 −1.19E−03 −3.99E−04 8.62E−04 1.12 0.73 0.64 0.66 1.04 1.89
04 −1.34E−03 −4.58E−04 9.61E−04 1.14 0.73 0.63 0.66 1.05 1.96

05 −3.08E−05 6.70E−05 2.24E−04 0.77 0.72 0.70 0.70 0.80 0.93
05 −1.92E−04 5.16E−06 3.21E−04 0.84 0.72 0.68 0.69 0.85 1.11
05 −3.51E−04 −5.57E−05 4.18E−04 0.89 0.71 0.67 0.68 0.90 1.26
04 −5.29E−04 −1.36E−04 4.95E−04 0.94 0.71 0.66 0.67 0.93 1.40
04 −6.73E−04 −1.82E−04 6.07E−04 0.98 0.71 0.65 0.66 0.96 1.52
04 −8.32E−04 −2.42E−04 7.04E−04 1.02 0.71 0.64 0.66 0.98 1.62
04 −1.00E−03 −3.14E−04 7.91E−04 1.05 0.71 0.63 0.65 1.00 1.72
04 −1.15E−03 −3.66E−04 8.95E−04 1.08 0.71 0.62 0.65 1.02 1.80
04 −1.31E−03 −4.27E−04 9.93E−04 1.10 0.71 0.61 0.64 1.03 1.88
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scenario (i.e., the partially corrected Rrc data with projected HyspIRI
SNRs, column 5 of Table 2) are presented here. Results from the first
scenario (i.e., standard ocean color atmospheric correction and surface
reflectance uncertainties estimated from SeaWiFS, column 2 of Table 2)
are very similar.

First, a surface floating feature due to Sargassum can be easily detect-
ed in theNDVI image. In both scenarios, NDVI of themixed pixel is signif-
icantly N0 as long as the Sargassum proportion of the pixel is N0.7%when
the water endmember has Chla of 0.14 mg m−3 and N1.1% when the
water endmember has Chla of 0.8 mg m−3. In other words, for a 60-m
resolution sensor and clear-water background, a surface slick of N0.4 m
in width and N180 m in length (the requirement for N3 pixels in length
is because a single-pixel anomaly is often treated as an image outlier and
thus discarded) can clearly show up in the NDVI imagery as an anomaly.
Formore turbidwaters (Chla=0.8mgm−3) the detection limit is 0.7m
in width and N180 m in length. Hu (2009) used MODIS-derived spectra
as endmember of Ulva, and estimated that the detection limit was 2–4%
of the MODIS 250-m pixel (i.e., 5–10 m in slick width). Such an estimate
agrees well with the visual inspection of the image pair of WV-2 (2-m
resolution) andMODIS in Fig. 9,where theMODIS FAI image could barely
reveal slicks caught by WV-2 (several meters in slick width). The
endmember spectra in Hu (2009) were perhaps underestimated in
magnitude due to either mixed MODIS pixels or slightly submerged
Ulva in water, resulting in an overestimate of the detection limit. In
other words if MODIS endmember spectra of Ulva completely exposed
to air were used, the 250-m imagery could reveal Ulva slicks of 2–5 m
in width if they were also exposed to air. For the same argument, if
Sargassum (or other floating materials) is submerged in water for
only 15 cm, the enhanced NIR reflectance would decrease by
exp(−2.5 m−1 × 0.15m× 2)= 47% (here 2.5m−1 is the water absorp-
tion coefficient at 752 nm, and 2 is to take into account the 2-way water
attenuation), and the detection limit is decreased to 1.1%/47% = 2.3%.
Another possible reason to lose the detection sensitivity is the atmo-
spheric attenuation that was not considered in the simulation. For
small bright features, atmospheric attenuation is higher than diffused
water surface, resulting in a loss of surface reflectance and the spatial
contrast. Therefore, with all these potential factors taken into account,
detecting a surface Sargassum slick without spectral discrimination is
easy with NDVI (and also with FAI) even if the feature is sufficiently
small compared to the pixel size (e.g., 1–2%).
Fig. 10. (a)WV-2RGB image at 2-m showingmany Sargassum rafts around coral reefs near Berm
resolution. Many of the small rafts in (a), some of which are outlined in red circles, disappeare
Second, once the slick is detected in the NDVI imagery, differentiating
Sargassum from other floating materials requires a much larger propor-
tion of Sargassum in the mixed pixel. Table 4a shows that in order to
tell whether a detected slick is Sargassum from the 3-step rules
(NDVI N 0, LD N 0, RGR N 1), the minimum Sargassum proportion of a
pixel (Pmin)was 20% (80%water). For turbidwaters Pmin of Sargassum in-
creased to 30% (70% water) (Table 4b). Note that such rules did not rule
out garbage or oil as they both show LD N 0 and RGR N 1 at these detec-
tion limits. However, without a priori knowledge of the environment, a
slight adjustment of the LD threshold, for example LD N 5 × 10−4, can
easily rule out these two possibilities. Indeed, because both garbage
and emulsified oil showed continuously high reflectance in the NIR (as
opposed to a local peak between 700 and 730 nm), they would show
relatively lower MCI values than Sargassum, and the use of MCI could
also rule out these two possibilities.

In summary, the simulation results suggest that for nearly all cases
considered using different atmospheric correction schemes and noise
considerations, although it is very easy to detect a small surface floating
slick (Pmin ~ 1–2% of pixel size) in the NDVI (and possibly FAI or MCI)
imagery, spectral discrimination between Sargassum and other floating
materials requires a much higher Pmin (20–30%), corresponding to
12–18 m slick width for the HyspIRI 60-m resolution data.

3.5. Spatial mixing and unmixing experiment using WV-2 data

Fig. 10 shows the comparison between the original WV-2 image at
2-m resolution and the spatially binned (simple averaging) image at
60-m resolution. This is the same image as shown in Fig. 9a (box 1).
Many of the small slicks observed in (a), as outlined in red, disappeared
in the reduced-resolution image in (b). However, the large slicks are
retained in (b), indicating that HyspIRI would be able to map large
Sargassum mats near Bermuda, which is potentially useful to under-
stand Sargassum ecosystem dynamics.

The spatial averaging in Fig. 10 can be reversed to determine the ac-
tual Sargassum coverage from the coarse-resolution mixed pixels.
Fig. 11A shows the field measured Sargassum and water spectra con-
volved to MODIS bands, while Fig. 11B shows that the unmixing
model worked fairly well in predicting the proportion of Sargassum in
the mixed pixels, with an estimated uncertainty of ±5%. In practice,
both the water and the Sargassum end-members will have spectral
uda. This is the same image as in box 1 of Fig. 9a. (b) The same image after binning to 60-m
d in (b), yet large rafts can still be visualized at 60-m resolution.



Fig. 11.A. Reflectance spectra of the ocean (sandy bottom at ~10mdepth, blue lines) and floating Sargassum (brown lines)measured off Bermuda, convolved toMODIS oceanwavebands.
The reflectance spectra are shown in Fig. 2b. B. Results of spectral unmixing for 100,000modeled ocean–Sargassummixtures using a generalized linear model. Thick black line shows 1:1
relationship between actual and predicted Sargassum proportions.
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variability, leading to increased uncertainties in the unmixing results
than shown in Fig. 11b. Such an uncertainty, however, should not
be interpreted as the detection limit of mixed pixels as shown in
Section 3.4, but an uncertainty in the estimated mixing ratio as a result
ofmany spectral endmembers used in themodel. On the other hand, the
unmixing is possible to reduce uncertainties in the coverage estimates
only if the coarse-resolution pixel can be delineated as containing
floating materials (i.e., proportion N Pmin). Nevertheless, the model
demonstrates the feasibility of accurate estimates of Sargassum cover-
age and possibly biomass, once the spectra of the two end-members
(Sargassum and water) are known and the parameter of biomass per
area is determined from field measurements.

4. Discussion

4.1. Proposed steps to detect and quantify Sargassum from space

The spectral analyses clearly showed that in an unknown ocean en-
vironment discrimination of Sargassum from other floating materials
would rely on the unique reflectance trough around 632 nm, together
with other spectral characteristics (e.g., enhanced reflectance between
580–650 nm). Indeed, such a reflectance trough has also been reported
in Dierssen et al. (2015) from field measurements and by several air-
borne missions. In addition to the PHILLS measurements over the Flori-
da Keys (Szekielda et al., 2010), Marmorino, Miller, Smith, and Bowles
(2011) used a Compact Airborne Spectro-graphic Imager (CASI) on an
aircraft to measure hyperspectral signal between 400 and 1000 nm
from Sargassum rafts off SE Florida, and showed a spectral trough
around 625 nm. Mehrtens et al. (2009) used an AISA Eagle (AWI)
hyperspectral sensor (400–970 nm, 2.9 nm) on a motor glider to mea-
sure Sargassum and other seaweed rafts near the island of Helgoland
(Germany, North Sea), and also reported a spectral trough around
625 nm. Thus, a set of rules can be established to utilize such spectral
features for Sargassum discrimination.

However, the above calculations and results did not consider several
other important factors when satellite total reflectance (Rt) data are
Fig. 12. Schematic flow chart showing the steps in detecting Sargassum from satellite measurem
materials.
used for image processing. These factors include masking of clouds
and severe sun glint; neither is trivial (Hu, 2009). Cloud detection in
the standard ocean color data processing relies on an NIR band, based
on the principle that cloud reflectance in the NIR is higher than from
cloud-free ocean surface. However, all floating materials would also
lead to enhanced NIR (and also SWIR) reflectance, thus making this
cloudmasking approach invalid. Other approaches have used band
ratios and ancillary information to improve cloud detection (see
comparison in (Barnes & Hu, 2013)), yet each cloud detection scheme
has its own strengths and weaknesses. Cloud detection as well as sun
glint masking and atmospheric correction are still active research
areas. For the purpose of Sargassumdetection in this study, it is assumed
that masking of clouds and severe sun glint can be achieved using algo-
rithms established in the literature, resulting in either fully atmospher-
ically corrected surface reflectance (R) or partially corrected Rrc, from
which the detection scheme can start. Fig. 12 shows a schematic flow
chart of the various steps in this entire process.

In such a process, the thresholds need to be first determined, using
either simulations as shown above (but with more realistic Sargassum
and water endmembers for the specific region) or field experiments.
Then, if the proportion of the detected feature is bthe detection limit
for spectral discrimination, the process will stop after the spatial
unmixing. This, however, does not necessarily mean that the detected
feature cannot be identified because some a priori knowledge of the
environment may be available to assist image interpretation.

4.2. Implications for data interpretation and sensor/algorithm design

First, detecting surface floating materials is primarily limited by
sensor spatial resolution. This appears to be intuitive even without in-
vestigation. However, the image comparison here presented visual evi-
dence, and the simulation further provided numerical limits. The results
showed that it is possible to detect a floating slick as long as the partial
coverage is N1–2% (note: the partial coverage needs to be significantly
higher (20–30%) in order to spectrally discriminate the feature without
a priori knowledge of the environment) of themixed pixel, regardless of
ents. LD0 and RGR0 are the threshold values to differentiate Sargassum from other floating
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a full or partial atmospheric correction. This is a conservative estimate
that takes into account the possibility that the floating materials may
be submerged to a shallow depth (e.g., 15 cm). Smaller patches of float-
ingmaterials could also be captured if they are fully exposed to air. This
is qualitatively demonstrated by the image comparison between
various resolutions. There are cases when the small Sargassum patches
are completely missed by the coarse-resolution pixels. Detecting these
patches would require another sensor with higher resolution. Yet
sensors with higher resolution typically have smaller footprint and
therefore cannot be used for routine monitoring. On the other hand, it
is highly desirable to have accurate knowledge of total Sargassum bio-
mass or coverage in the GOM and Atlantic. Gower et al. (2006, 2011)
used MERIS 300-m and 1.2-km data to estimate the total coverage, yet
the coarse resolution must have missed many small patches. The cur-
rent study confirms this speculation.With the Landsat 30-m resolution,
most of the airborne-identified Sargassum patches (in the order of
meter or sub-meter in size) were missed. Even with the AVIRIS 12-m
resolution, the airborne-identified Sargassum patches were still missed.
The small patches may be as important as those large Sargassum slicks
(which showed up in MERIS or MODIS imagery) for local ecology and
for tracing eddies and eddy fronts, and theymay also contribute to a sig-
nificant portion of the total biomass in the GOM and Atlantic. Unfortu-
nately it is currently impossible to estimate how much Sargassum is
undetected in coarse-resolution satellite imagery due to lack of
complete coverage of finer-resolution (e.g., airborne photo) data. It is
speculated that, however, once the total coverage is estimated indepen-
dently by both the Landsat and airborne observations with sufficiently
large coverage, a statistical relationship might be established to scale
Landsat observations to result in an improved estimate of total Sargas-
sum coverage.

With its proposed 19-day cycle and a swath width comparable to
Landsat, the HyspIRI mission will provide cloudfree data only occasion-
ally, thus not well suitable for routine monitoring of any fast-changing
features. However, its advantage over Landsat sensor series is two-
fold. One, its SNRs are much higher than Landsat TM and ETM+, thus
providing a better capacity for capturing small patches. SNR of ETM+
under typical radiance input over the ocean is ~70:1 at 565 nm and
~41:1 at 640 nm (Hu, Feng, et al., 2012a). SNR of the new Landsat OLI
was estimated to be 220:1 at 565 nm and 80:1 at 750 nm (Pahlevan
et al., 2014), almost the same as with HICO (Lucke et al., 2011). In the
simulations the SNRs of HyspIRI were assumed to be 200:1 for all spec-
tral bands over typical clearwater targets. These are significantly higher
than the 60:1 SNRs of AVIRIS for the red and NIR bands. Even if this re-
quirement could not be fully met and the SNR in the red and NIR bands
were comparable to those of the OLI and HICO, its sensitivity would still
be much higher than that of Landsat ETM+. In this case of course the
detection limit provided in Table 4 will need to be revisited. With
the OLI in orbit since February 2013, it should be useful to compare
concurrent and collocated OLI and ETM+ imagery to determine how
much more Sargassum OLI may detect over ETM+ with the enhanced
SNR.

Second, the optimal band centers have been determined through
derivative analysis and iterative index calculations for 3 resolutions (1,
5, and 10 nm), and some of them are not multiples of 5 or 10-nm. For
example, at 5-nm resolution, the optimal band centers to calculate LD
are 602, 622, and 647 nm instead of 600, 625, and 650 nm. Furthermore,
when atmospheric effects are considered, it is better to choose 647 than
652 nm to avoid the water vapor absorption between 645–660 nm
(Gordon, 1993). The band centers of 605, 625, and 645-nm for the
10-nm resolution sensor provide new information to the band recom-
mendations by Lee, Carder, Arnone, and He (2007), who proposed
615, 635, and 665 nm with 10-nm bandwidth in the spectral region of
600–670 nm. That study used a library of water reflectance spectra
that did not include Sargassum or other floating materials. Likewise,
the spectral reconstruction scheme of Lee, Shang, Hu, and Zibordi
(2014) also did not consider these floating materials. Whether the
spectral characteristics of these floating materials can be reconstructed
using the proposed bands requires further analysis.

Third, the stepwise rule is to discriminate Sargassum from all other
floating materials listed in this study. Often in an environment some
endmembers can be ruled out to simplify the rule. For example, in the
GOM although emulsified oil could be present in a limited region and
limited time (e.g., the DWH case), its occurrence is rare and for most
cases it can be ruled out. Garbage patches have been reported in the
Pacific and Atlantic, but not in the GOM, thus could be ruled out as
well. Ulva blooms in the GOM have not been reported either. Then,
one only needs to discriminate Sargassum from the other two
endmembers that are also commonly found in the GOM: Trichodesmium
and Syringodium. The RGR index should be effective in discriminating
them, as the latter two have reflectance peaking around 550 nm instead
of 580–650 nm for Sargassum. Such a simplified rule has significant im-
plications on the existing sensors such asMERIS andMODIS. TheMERIS
620-nmband andMODIS 645-nm bandmay be used to derive a sensor-
specific RGR to differentiate Sargassum from the other two once the fea-
tures are delineated using either MERIS MCI or MODIS FAI. This simpli-
fied approach may be tested over known bloom cases. Similarly,
although most analyses here were focused on Sargassum, the general
approach could be extended to other floating materials, with similar
stepwise rules established through Tables 3–4 and Fig. 12. For the
same argument, because other brown algae also have similar spectral
curvature around 630 nm (Hochberg et al., 2003), if these types of
brown algae also occur in surface waters of a region where Sargassum
is to be detected, it would be extremely difficult to differentiate
Sargassum from them.

Finally, the sensitivity simulations are based on the spectral
endmembers provide in Fig. 2. In reality, although the spectral shapes
of the floating materials are unlikely to change, their magnitude can
vary. More importantly, there were only two water endmembers used
in the simulation, while the water spectra can change substantially in
both shape and magnitude (Lee et al., 2007, 2014). For example, for
sediment-rich waters the reflectance may peak around 600–640 nm
(brownish). The RGR index would then be useless to separate
Sargassum from this type of background water. For these types of situa-
tions, the simulations may be revisited to account for more realistic
water endmembers. The general approach, on the other hand, should
still be applicable not only to Sargassum but also all other floating
materials.

5. Conclusion

Various marine organisms and materials floating on the sea surface
can cause enhanced reflectance in the NIR, making discriminating and
quantifying Sargassum difficult. This study analyzed the spectral charac-
teristics of the field measured reflectance spectra of Sargassum,
Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil, and
used multi-sensor comparison and numerical simulations to address
the spectral and spatial requirements of satellite sensors in order to de-
tect, discriminate, and quantify Sargassum. Spectral regions and spectral
bands are identified to differentiate Sargassum from other look-alikes at
different spectral resolutions (1, 5, and 10 nm). Once these spectral
bands are available from airborne or future satellite missions such as
HyspIRI, a stepwise rule using several indexes can fingerprint the
Sargassum pixels. Currently, in the absence of several spectral bands be-
tween 580 and 650 nm on the multi-band sensors such as MODIS
and MERIS, the use of the RGR index in addition to MCI (or NDVI or
FAI) may be able to differentiate Sargassum from Syringodium (or
Trichodesmium) in an environment free of emulsified oil and garbage.
However, spatial resolution is another major limiting factor not only
for the coarse-resolution MODIS or MERIS sensors, but also for the
higher-resolution Landsat and HyspIRI sensors. Nevertheless, the
HyspIRI sensor at 60-m resolution with its hyperspectral capacity and
expected SNRs (200:1) would be able to detect and quantify (through
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linear unmixing) Sargassum slicks of N1 m in width and more than
180 m in length, although spectral fingerprinting using the proposed
scheme requires about 12–18 m slick width. Such a capacity, when
combined with other sensors with lower-resolutions (both spectral
and spatial) butmore synoptic coverage,will greatly enhance our ability
to map Sargassum, estimate total biomass, and help understand open-
and coastal-ocean ecosystem dynamics.

Notations
DWH Deepwater Horizon
GOM Gulf of Mexico
NEGOM Northeast Gulf of Mexico
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
CASI Compact Airborne Spectro-graphic Imager
GEO-CAPE Geostationary Coastal and Air Pollution Events
HICO Hyperspectral Imager for the Coastal Ocean (2009–2014)
HyspIRI Hyperspectral Infrared Imager
MERIS Medium Resolution Imaging Spectrometer (2002–2012)
MODIS Moderate Resolution Spectroradiometer (1999 — on Terra;

2002 — on Aqua)
OLI Operational Land Imager (on Landsat 8, 2013–present)
PHILLS Portable Hyperspectral Imager for Low-Light Spectroscopy
PRISM Portable Remote Imaging Spectrometer
SeaWiFS Sea-viewing Wide Field-of-view Sensor (1997–2010)
WV-2 WorldView-2
CDOM Colored Dissolved Organic Matter (CDOM)
Chla Chlorophyll a concentration (mg m−3)
Fo Annual mean solar constant (mW cm−2 μm−1)
L Radiance (mW cm−2 μm−1 sr−1)
R Surface reflectance (dimensionless)
Rrs Surface remote sensing reflectance (sr−1)
Rrc Rayleigh-corrected reflectance (dimensionless)
NIR Near infrared
SWIR Shortwave infrared
FAI Floating Algae Index
LD Line Depth
MCI Maximum Chlorophyll Index
NDVI Normalized Difference Vegetation Index
RGR Red/Green Ratio
SI Sargassum Index
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