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Sargassumwashing ashore on the beaches of the Caribbean Islands since 2011 has caused problems for the local
environments, tourism, and economies. Although preliminary results of Sargassum distributions in the nearby
oceans have been obtained using measurements from the Medium Resolution Imaging Spectrometer (MERIS),
MERIS stopped functioning in 2012, and detecting and quantifying Sargassum distributions still face technical
challenges due to ambiguous pixels from clouds, cloud shadows, cloud adjacency effect, and large-scale image
gradient. In this paper, a novel approach is developed to detect Sargassum presence and to quantify Sargassum
coverage using the Moderate Resolution Imaging Spectroradiometer (MODIS) alternative floating algae index
(AFAI), which examines the red-edge reflectance of floating vegetation. This approach includes three basic
steps: 1) classification of Sargassum-containing pixels through correction of large-scale gradient, masking clouds
and cloud shadows, and removal of ambiguous pixels; 2) linear unmixing of Sargassum-containing pixels; and,
3) statistics of Sargassum area coverage in pre-defined grids atmonthly, seasonal, and annual intervals. In the ab-
sence of directfieldmeasurements to validate the results, limited observations from theHyperspectral Imager for
the Coastal Ocean (HICO) measurements and numerous local reports support the conclusion that the elevated
AFAI signals are due to the presence of Sargassum instead of other floatingmaterials, and various sensitivity anal-
yses are used to quantify the uncertainties in the derived Sargassum area coverage. The approach was applied to
MODIS observations between 2000 and2015 over the CentralWestAtlantic (CWA) region (0–22°N, 63–38°W) to
derive the spatial and temporal distribution patterns as well as the total area coverage of Sargassum. Results in-
dicate that the first widespread Sargassum distribution event occurred in 2011, consistent with previous MERIS
findings. Since 2011, only 2013 showed a minimal Sargassum coverage similar to the period of 2000 to 2010;
all other years showed significantly more coverage. More alarmingly, the summer months of 2015 showed
mean coverage of N2000 km2, or about 4 times of the summer 2011 coverage and 20 times of the summer
2000 to 2010 coverage. Analysis of several environmental variables provided some hints on the reasons causing
the inter-annual changes after 2010, yet further multi-disciplinary research (including in situ measurements) is
required to understand such changes and long-term trends in Sargassum coverage.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Since 2011, massive beaching events of the pelagic Sargassum
macroalgae have occurred frequently on the Lesser Antilles Islands in
the southern Caribbean (Fig. 1), significantly impacting local environ-
ments, tourism, fisheries, and economies (http://mission-blue.org/
2014/10/sargassum-inundates-the-beaches-of-the-caribbean/; Gower,
Young, & King, 2013; Maurer, De Neef, & Stapleton, 2015). Concurrent
beaching events in western Africa and northern Brazil have also been
reported (Oyesiku & Egunyomi, 2015; Széchy, Guedes, Baeta-Neves, &
Oliveira, 2012). While pelagic Sargassum serves as an important habitat
and refuge for many marine organisms in the open-ocean environment
(Council, 2002; Rooker, Turner, & Holt, 2006; Witherington, Hirama, &
., Mapping and quantifying Sa
onment (2016), http://dx.doi
Hardy, 2012), excessive beaching poses significant environmental and
profound economic problems. For example, over $2.91 million have
been spent annually on the cleanup of Sargassum from Texas beaches
(Webster & Linton, 2013). Despite the enormous efforts of local man-
agement in response to these beaching events, our knowledge about
these blooms is limited. For example: Where do Sargassum blooms ini-
tiate?Howmuch Sargassum is present in the oceans?What causes these
blooms and their inter-annual changes? How do these blooms impact
the ocean's biogeochemistry and ecology? Indeed, to date, the only
published remote sensing works used Medium Resolution Imaging
Spectrometer (MERIS) observations to document the Sargassum distri-
butions and abundance in the Intra-Americas Sea and the central Atlan-
tic between 2002 and 2011 (Gower & King, 2011; Gower et al., 2013).
However, as MERIS stopped functioning in early 2012, there is virtually
no information on the Sargassum distribution or abundance in the Ca-
ribbean, the greater Intra-Americas Sea, or nearby oceans after 2011
rgassum distribution and coverage in the Central West Atlantic using
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Fig. 1.MODIS/Aqua AFAI image (a) on 1 January 2015 (17:05 GMT) over the CWA showing surface slicks (box 2)with enhanced near infrared (NIR) reflectance. Black color indicates land
or clouds or sunglint, representing no valid observation. The blue-colored features near the cloud edge (box 1), although easily identified as non-Sargassum throughvisual inspection,make
accurate quantification of Sargassum coverage very difficult with automatic methods because they can be falsely treated as Sargassum-containing pixels. Red crosses mark the location of
the cloud shadow and Sargassum pixels whose Rrc difference spectra (compared to the nearbywater pixels) are shown in box 1 and box 2, respectively. The surface reflectance spectra (R,
dimensionless) of Sargassummatsmeasured in theGulf ofMexico and off Bermuda using a hand-held spectrometer are shown in (b). The thick solid line represents themean of N50mea-
surements while the dashed lines indicate 2 times of standard deviation. Also overlaid are the three MODIS bands centered at 667, 748, and 869 nm, which are used to calculate AFAI.
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because of the loss of MERIS. Furthermore, the methods used in the
MERIS-based study to detect and quantify Sargassum require refine-
ments (see Section 2). Because these questions remain unanswered,
the effort to broaden and continue further research, through the refine-
ment of MERIS-based observations, and while exploring the possibility
of using other satellite instruments, becomes crucial.

In 2009, Hu (2009) developed a floating algae index (FAI) using data
collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS) to detect and trace the Ulva prolifera macroalgae blooms in
the Yellow Sea near Qingdao, China (He, Liu, Yu, Li, & Hu, 2011; Hu et
al., 2010a). Because FAI was designed using the vegetation red-edge
reflectance in the near infrared, it can be used to detect any floating
vegetation including Sargassum (Hu, Feng, Hardy, & Hochberg, 2015).
In 2010, in order to help monitor potential Sargassum beaching events
on the Lesser Antilles Islands in the southern Caribbean, FAI was imple-
mented to generate MODIS FAI imagery covering the Central West
Atlantic (CWA) region (0–22°N, 63–38°W) in near real-time through a
Virtual Antenna System (VAS) (Hu, Barnes, Murch, & Carlson, 2014).
The system has been running operationally with daily updates in near
real-time (within 4–6 h of the satellite overpass). However, because
there is no effective cloud-masking method for FAI, clouds are not
masked in the imagery. Although Sargassum slicks can be visually differ-
entiated from clouds in FAI imagery with a trained eye, it is difficult for
visual interpretation by average users, as both Sargassum slicks and
Please cite this article as: Wang, M., & Hu, C., Mapping and quantifying Sa
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clouds show high FAI values. To overcome this difficulty, an alternative
FAI (AFAI) was developed (where clouds can be masked through band
combinations), and data was produced over the whole MODIS time se-
ries (see below). Fig. 1 shows an example of theAFAI imagery generated
and distributed in near real-time.

AFAI imagery allows for simple interpretation by a layperson to
identify surface slicks of floating vegetation. When combined with sur-
face current velocity estimates from the Hycom hydrodynamics model
(all available through a simple click on a customized web portal
http://optics.marine.usf.edu/projects/SaWS.html with full Google-
Earth compatibility), the AFAI imagery has provided timely information
on the location of large Sargassum slicks as well as their movement
speed and direction to many local groups and individuals (Hu et al.,
2014). However, several difficulties emerged when attempting to de-
rive long-term statistics of Sargassum distribution and abundance
using near real-time imagery: 1) frequent cloud cover made the valid
data rather scarce (note the location of this region's proximity to the
Inter Tropical Convergence Zone (ITCZ)) (Wylie, Jackson, Menzel, &
Bates, 2005); 2) although it is relatively straightforward to identify Sar-
gassum slicks through visual inspection, because false positive detection
often results from cloud shadow contamination it is difficult to auto-
mate such a detection; 3) the large-scale AFAI gradient across the
image scene makes it difficult to apply threshold-based segmentation;
and, 4) each identified Sargassum-containing pixel may contain varying
rgassum distribution and coverage in the Central West Atlantic using
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proportions of Sargassum, leading to biased statistics if each Sargassum-
containing pixel is treated equally.

Hence, given the challenges in quantitative assessment of Sargassum
distributions, area coverage, long-term trends, and the pressing need of
such knowledge in order to understand the potential causes of the trend
and to help make management decisions, the objectives of this study,
based on the existing MODIS AFAI imagery, are to:

1) develop a practical and objective method to quantify Sargassum dis-
tribution and area coverage in the Central West Atlantic using
MODIS observations; and,

2) establish a long-term (2000–2015) time series of Sargassum distri-
bution patterns and area coverage in the study region to quantify
the long-term trend.

As this is primarily a methodology development paper, rather than
following a traditional structure, the paper is organized in a way to
first provide some background on Sargassum detection, then detail all
steps in the method, and finally present a time series of Sargassum dis-
tributions. While the focus of this study is on the development of meth-
odology and establishment of long-term time series, a preliminary
analysis of several environmental variables is also undertaken in an at-
tempt to understand these long-term patterns.

2. Sargassum remote sensing: What is available and what is not?

Gower, Hu, Borstad, and King (2006) first demonstrated that pelagic
Sargassum (Sargassum natans and Sargassum fluitans) can be detected
from satellite imagery based on elevated NIR reflectance (the red-edge
effect, i.e., enhanced reflectance between 700 and 730 nm). This detec-
tion principle was applied to MERIS Maximum Chlorophyll Index (MCI
(Gower, King, Borstad, & Brown, 2005)) (Gower et al., 2006), and later
to MODIS FAI (Hu, 2009). Based on the MERIS MCI products, Gower
and King (2011) first generated Sargassum distribution maps for the
Gulf of Mexico (GOM) and Sargasso Sea between 2002 and 2008. They
were later improved by extending coverage to include the central Atlan-
tic with data up to 2011 in an attempt to explain the potential source of
the 2011 Sargassum bloom in the Caribbean (Gower et al., 2013).When
generating the monthly Sargassum distribution maps, for each of the
pre-defined 5-km grids within the area of interest, the maximum MCI
was used to represent that grid. Then, the maximum MCI value during
the entire month was used to represent the monthly MCI value for
that grid. Monthly maps derived in this manner potentially contain
three error sources: 1) MCI was obtained from top-of-atmosphere
(TOA) radiance, instead of atmospherically corrected reflectance, lead-
ing to uncertainties in deriving a universal threshold for Sargassum de-
tection; 2) errors in TOA radiance-based cloud-masking; and 3) the
use of maximumMCI instead of meanMCI within the 5-km grid during
a month may overestimate Sargassum abundance.

Hu (2009) showed that MODIS FAI can also be used to detect
macroalgae blooms. MODIS FAI and AFAI were implemented to detect
and trace Sargassum blooms in near real-time over the CWA in 2010
(Hu et al., 2014) but has since been back processed to 2000 to include
all MODIS data for the region. Compared to MERIS MCI, MODIS AFAI
provides a comparable and potentially better alternative because
MODIS is onboard both Aqua and Terra satellites (afternoon and morn-
ing passes, respectively) and each MODIS swath (2330 km) is approxi-
mately twice that of a MERIS swath (1150 km). Although the near
real-time MODIS AFAI imagery has provided valuable information on
the Sargassum location and movement, its interpretation was primarily
based on visual inspection. Due to technical difficulties such as discrim-
inating ambiguous pixels from clouds, cloud shadows, cloud adjacency
effects, and removing large-scale image gradients, there has not been
any automatic detection, delineation, or use of MODIS AFAI to generate
long-term statistics.

To date, most macroalgae delineation methods (through the use of
MCI, FAI, Normalized Difference Vegetation Index (NDVI), or other
Please cite this article as: Wang, M., & Hu, C., Mapping and quantifying Sa
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similar data products) are threshold-based segmentation methods that
all suffer from cross-scene large-scale image gradient. Several attempts
have beenmade to use a global-scope threshold for image segmentation
in recent studies. In 2009, Shi and Wang (2009) developed a floating
macroalgae delineation method producing Normalized Difference
Algae Index (NDAI) products which are similar to NDVI products, but a
Rayleigh correction is applied to TOA reflectance to remove the molecu-
lar scatteringeffects beforeNDAI is calculated. The image isfirst classified
into “algae” and “non-algae” classes using the median value of the NDAI
scene, then the ocean background pixel value is determined from the
mean value of the “non-algae” pixels in a 10 × 10 pixel window centered
on the given “algae” pixel (Shi &Wang, 2009). The potential problems in
this method are: 1) that themean valuemay be affected by the high sig-
nal values of the algae pixels; 2) the 10 × 10 pixel window could be
largely or even completely contaminated by algae pixels; and, 3) that
the scene-wide NDAI median value may not be able to provide a good
classification of the algae pixels (Garcia, Fearns, Keesing, & Liu, 2013).
The main idea is to obtain the background ocean signal through image
processing so that local macroalgae signals can be scaled against the
cross-image gradient. To overcome these issues, a ‘difference image’
was proposed by Keesing, Liu, Fearns, and Garcia in 2011 and is comput-
ed by subtracting a background ocean image from the original image.
Called the Scaled Algae Index (SAI) method, Keesing, Liu, Fearns, and
Garcia (2011) proposed it to quantify U. proliferamacroalgae blooms in
the Yellow Sea from MODIS NDVI images. The method used a
25 × 25 pixel median filter to determine the background water signal
and applied a local threshold segmentation, based on the statistical dis-
tribution in the 25 × 25 pixel window, centered on the pixel of interest.
The method was further modified in Garcia et al. (2013) to select the
optimal window size and segmentation threshold. Due to variability
of the feature distribution in the median filter window, the window
size and the threshold often need to be tuned by a human expert to
achieve satisfactory performance. In short, although visual detection is
straightforward through one of the indexes, automatic detection and
quantification of macroalgae blooms are still problematic when long-
term time series data are desired. Another difficulty is that these index-
es only detect the red-edge reflectance and thus not able to spectrally
differentiate Sargassum from other floating materials (Dierssen, Chlus,
& Russell, 2015; Hu et al., 2015).While the latter requires hyperspectral
data that are mostly unavailable from currents satellites, the former is
addressed using the approach developed in this study.

3. Data sources and processing methods

Although the near real-time monitoring of Sargassum slicks started
in 2010 (Hu et al., 2014), the development of a complete time series
MODIS data set, covering the CWA between April 2000 and October
2015, required downloading all relevant data from the U.S. National
Aeronautics and Space Administration (NASA) Goddard Space Flight
Center (http://oceancolor.gsfc.nasa.gov) which were subsequently
processed using the software package SeaDAS (version 7.0.2) to gener-
ate Rayleigh-corrected reflectance (Rrc) data for each spectral band
(Hu, 2009). Both MODIS/Terra (MODIST) and MODIS/Aqua (MODISA)
data were downloaded and processed. The Rrc data were then used to
calculate FAI for each pixel (Hu, 2009):

FAI ¼ Rrc;NIR–R0
rc;NIR

R’
rc;NIR ¼ Rrc;RED þ Rrc;SWIR–Rrc;RED

� �� λNIR–λREDð Þ= λSWIR–λREDð Þ; ð1Þ

where the subscripts RED, NIR and short-wave infrared (SWIR) repre-
sent the spectral bands. FAI is the difference between Rrc,NIR and the
baseline reflectance R′rc,NIR derived from the linear interpolation be-
tween the red and SWIR bands. For MODIS FAI calculations, λRED =
645 nm, λNIR = 859 nm, and λSWIR = 1240 nm. The FAI product pro-
vides a quick and easy way to visualize surface floating algae. However,
due to lack of an effective cloud-masking algorithm, only people with
rgassum distribution and coverage in the Central West Atlantic using
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training can differentiate floating algae slicks from cloud patches and
other artifacts. This represents a major hurdle for an average person to
interpret the images. To overcome this difficulty, the AFAI product
was generated using the same FAI design but using different spectral
bands (λRED= 667 nm, λNIR = 748 nm, λSWIR= 869 nm). Note that al-
though 869 nm is in theNIR spectral range, for simplicity and consisten-
cy it is still termed as “SWIR”.

Although AFAI has a lower spatial resolution (1-km) compared to
FAI (250-m), the 1-kmbands used in calculating AFAI havemuchhigher
signal-to-noise ratios (SNRs) than the 250-m bands for FAI (e.g., 995:1
for the 748-nm 1-km band compared to 157:1 for the 859-nm 250-m
band, Hu et al., 2012), thus compensating for the reduction in resolution
when detecting small Sargassum mats. While the disadvantage of AFAI
is its saturation over bright targets such as clouds and strong sunglint
(therefore leading to less data coverage), its advantage is relatively
easy cloud-masking, making the resulting imagery simple to interpret
even by a layperson. Such characteristics are particularly important for
near real-time applications. One example of the AFAI imagery distribut-
ed online is shown in Fig. 1. The Sargassum slicks can be clearly visual-
ized after cloud-masking. In total, 17,772 MODIS AFAI images from
Terra and Aqua measurements between April 2000 and November
2015 were generated in order to develop a time series, corresponding
to about 95 images per month.

To help understand the observed Sargassum distribution patterns,
environmental data were obtained from several sources. Three data
types were obtained from NASA's Giovanni online visualization and
analysis system (http://giovanni.sci.gsfc.nasa.gov/giovanni/). These
data included: 1) cloud fraction data from the Atmospheric Infrared
Sounder (AIRS) AIRX3STM v006 between January 2009 and October
2015; 2) precipitation data from the Tropical Rainfall Measuring
Mission (TRMM) TRMM_3b43 v7 between January 2009 and August
2015; and 3) aerosol optical depth (AOD, 500 nm) data from the
Ozone Monitoring Instrument (OMI) OMAERUVd v003 between Jan-
uary 2009 and November 2015. In addition to Giovanni data, sea sur-
face temperature (SST) anomaly data were derived from National
Oceanic and Atmospheric Administration (NOAA) Optimum Interpo-
lation (OI) SST V2 monthly mean products (provided by the NOAA/
OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/) from January 2009 to August 2015.
Photosynthetically available radiation (PAR) data were obtained
from the MODIS Aqua 4 km monthly mean products (http://
oceancolor.gsfc.nasa.gov/cgi/l3) from January 2009 to August 2015.
And finally, Amazon River discharge data were acquired from the
Brazilian National Water Agency at station Obidos (http://www2.
ana.gov.br/Paginas/EN/default.aspx). The station is located 800 km
upstream from the Atlantic Ocean and is above the tide's influence
thus normal water-discharge fluctuations can be detected.

4. Technical approach

Given the available 17,772 AFAIMODIS images, the process formap-
ping and quantifying the Sargassum distribution and coverage is com-
posed of three major steps:

1) Classification of individual image pixels into three classes:

A) no-observation (this class includes no satellite coverage,
sunglint, clouds, cloud shadows, and all other image artifacts);

B) Sargassum-free; and
C) Sargassum-containing.

2) Unmixing of the Sargassum-containing class using local thresholds
for minimal (0%) and maximal (100%) sub-pixel coverage in order
to estimate the fractional Sargassum coverage within a pixel.

3) Data binning of the individual image pixels into pre-defined grids at
given time intervals (month, season, year) for the entire study
Please cite this article as: Wang, M., & Hu, C., Mapping and quantifying Sa
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period (2000–2015), which leads to time series of area coverage
and distribution maps.

Note that in reality the elevated AFAI signal can be from any floating
vegetation, not just Sargassum. These floating vegetation include
Trichodesmium mats (Hu et al., 2010b; Subramaniam, Brown, Hood,
Carpenter, & Capone, 2002). This is actually where the name of floating
algae index came from (Hu, 2009). However, in the context of Sargas-
summapping the elevated AFAI signal is deemed to come from Sargas-
summats based on both direct and indirect evidence (see Discussion).

The entire process is summarized in the flowchart in Fig. 2. Specifi-
cally, aftermasking clouds, sunglint and land, initial Sargassum pixel ex-
traction is achieved by comparing the original AFAI image and a surface
fitted image (generated by computing a four-degree polynomial fit to a
surface with the valid AFAI pixels in each image). The extracted pixels
are marked as potential Sargassum-containing pixels, and are excluded
from themedian filter used to calculate the Sargassum-free background
ocean AFAI signal. The ‘difference image’ between the original AFAI
image and background Sargassum-free ocean AFAI image is then seg-
mented to extract the final Sargassum-containing pixels using a global
scope (meaning within the CWA region in this work) threshold, T0.
False-positives over cloud shadow pixels (e.g., Fig. 1) are masked as in-
valid data. For each Sargassum-containing pixel a linear unmixing
scheme, based on locally-adjusted lower (0% sub-pixel) and upper
(100% sub-pixel) bound coverage, is used to determine the fractional
Sargassum coverage within a pixel. Finally, all valid pixels (both Sargas-
sum-free and Sargassum-containing) within a pre-defined grid and a
given time interval (month, season, year) are used to calculate the
mean Sargassum fractional coverage for that grid and time interval. Sta-
tistical analyses of all grids lead to distribution and coverage maps.
Below these steps are described in detail.

4.1. Step 1: Pixel classification into three classes: No observation (A),
Sargassum-free (B), and Sargassum-containing (C)

4.1.1. No observation due to no satellite coverage, sunglint, clouds, or cloud
shadows

All these conditions were treated as no observation, as no informa-
tion on whether a pixel contains Sargassum can be determined.

4.1.1.1. No coverage. Each AFAI image was mapped to a rectangular pro-
jection,where some of thepixels in the projected imagemaynot be cov-
ered by MODIS measurements. These pixels were assigned a value of
−0.0999 during map projection. Pixels meeting the following criteria
were identified as no satellite coverage:

Rrc 667ð Þ ¼ −0:0999 or Rrc 748ð Þ ¼ −0:0999 or Rrc 869ð Þ ¼ −0:0999:

ð2Þ

4.1.1.2. Sunglint and cloud-masking. Both sunglint and clouds lead to en-
hanced reflectance in all spectral bands. In this study, pixelsmeeting the
following criteria were identified as sunglint or clouds:

Rrc 667ð Þ N 0:2 or Rrc 748ð Þ N 0:2 or Rrc 869ð Þ N 0:2: ð3Þ

The criteria were determined through trial and error. Although
SeaDAS processing generates a standard CLDICE (clouds or ice) flag
(Patt et al., 2003), a comparison between CLDICE and the threshold-
based cloud-masking (Fig. 3) shows that CLDICE over-masked Sargas-
sum-free pixels in some cases (Fig. 3e) while under-masked Sargas-
sum-containing pixels in other cases (Fig. 3h). The former would
reduce the number of valid observations while the latter would reduce
the number of Sargassum-containing pixels, both leading to increased
uncertainties in the Sargassum coverage estimation. Note that CLDICE
rgassum distribution and coverage in the Central West Atlantic using
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Fig. 2. Work flow to generate Sargassum distribution and coverage maps from MODIS AFAI images. They are generally grouped into three steps, as described in the text. Note that for
simplicity and illustration purposes, cloud shadow masking is shown here as a preprocessing step before classification. Practically, cloud shadow masking has to rely on the
preliminary classification results to improve the performance. Note that the illustration is to calculate a monthly mean, but the approach is the same for other time intervals. αi

represents the Sargassum subpixel coverage of the ith pixel. Details can be found in Section 4.1.1.
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in SeaDAS was optimized for the processing of global ocean color data,
with the ultimate goal of obtaining the highest-quality ocean color
data products. In practice, to meet this goal CLDICE was determined
in a conservative way, defined as Rrc(859) (after subtracting an esti-
mated sunglint reflectance) N 0.027. This is why CLDICE masked
many non-cloud pixels (including Sargassum-free water pixels and
Sargassum-containing pixels). Furthermore, some of the sunglint
pixels were not masked by CLDICE (gray-reddish color in Fig. 3),
and these pixels have high AFAI values, leading to false positive de-
tection. Because threshold-based cloud-masking avoided all these
problems, this method was selected to mask both sunglint and
clouds in this study.

4.1.1.3. Cloud shadow screening. Cloud shadow pixels show high AFAI
values and may be falsely identified as Sargassum (see Fig. 4a & b)),
leading to overestimation of the Sargassum area coverage.
Fig. 3. Comparison between the threshold-based sunglint and cloud-masking (this study, (a)
(h) are the enlarged regions from (b); (d) and (g) are the corresponding RGB images to fac
(h) (red dashed circle). The color legend of the AFAI images is the same as the one in Fig. 1. (F
the web version of this article.)
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Due to the lack of direct solar radiation, cloud shadow pixels show
low Rrc values as compared with the surrounding pixels. In this study,
a local total Rayleigh corrected reflectance (LTR) was first defined as

LTR ¼ Rrc 469ð Þ þ Rrc 555ð Þ: ð4Þ

Then, thedifference between LTR of the current pixel and a reference
LTR value, defined as themean LTR of a 31 × 31 pixel window centered
at the current pixel, was examined. If the difference was lower than a
predefined threshold, Tc:

LTR–RefLTR b Tc: ð5Þ

The current pixel was regarded as a cloud shadow pixel andmasked
as no observation. This cloud shadow masking is termed as local low
) and SeaDAS CLDICE masking (b). (c) and (f) are the enlarged regions from (a); (e) and
ilitate interpretation. CLDICE over-masked water pixels in (e) and Sargassum pixels in
or interpretation of the references to color in this figure legend, the reader is referred to
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Fig. 4. Comparison between SeaDAS LOWLWand the LLR cloud shadowmasking (this study). (a) and (e) are the enlarged RGB images; (b) and (f) are the unmasked AFAI images; (c) and
(g) show the LOWLWflagged pixels in red; (d) and (h) show the LLRmaskedpixels (this study) in red. In (c), some of the cloud shadowpixels aremissed by the LOWLWflag (pink circles).
In (g), someof the Sargassum-containing pixels areflagged as cloud shadows (yellow circles). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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reflectance (LLR) masking, where Tc was determined to be−0.01 after
trial and error and a sensitivity analysis.

Ideally, a cloud shadow mask should retain most Sargassum pixels
and exclude most cloud shadow pixels. To select the optimal Tc in the
LLR cloud shadow masking, we manually delineated several regions of
interest for cloud shadow pixels (Nc = 2573) and Sargassum pixels
(Ns= 49.559). According to the cumulative and normalized histograms
(Fig. 5a & b)), a selection of Tc =−0.01 served this purpose. Therefore,
Tc=−0.01was used as the threshold to detect andmask cloud shadow
pixels.
Fig. 5. Cumulative and normalized frequency distributions of Sargassum pixels, cloud shado
distribution of the (LTR − RefLTR) values of Sargassum pixels and cloud shadow pixels. (c)
adjacent ocean pixels.
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Note that the LOWLW flag generated by SeaDAS processing has also
been proposed to detect cloud shadows (Patt et al., 2003). It is based on
a threshold of 0.15 mW cm−2 um−1 sr−1 in the derived normalized
water-leaving radiance at 555 nm. However, a comparison between
the LOWLW and LLR in Fig. 4 shows that LOWLW often missed some
cloud shadow pixels (pink circles in Fig. 4c) while over-masked Sargas-
sum-containing pixels (yellow circles in Fig. 4g). In contrast, both the
under-masking of water pixels and the over-masking of Sargassum-
containing pixels are reduced by the LLR cloud shadowmaskingmethod
(Fig. 4).
w pixels and adjacent ocean pixels in several regions of interest. (a) and (b) show the
and (d) show the distribution of the (AFAI − RefAFAI) values of Sargassum pixels and
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4.1.2. Class B and Class C: Sargassum-free and Sargassum-containing pixels
Due to the presence of sunglint contaminated pixels (adjacent to

sunglint masked pixels), the relatively large swath of MODIS, and in-
complete atmospheric correction, there are large-scale gradient differ-
ences across AFAI images (e.g., Figs. 1 & 3) where AFAI values over
Sargassum-freewater are lower near the satellite scan edge than around
the scan center. This makes it impossible to apply a global scope thresh-
old to extract Sargassum-containing pixels in uncorrected images. Sev-
eral steps were used to account for this across-image gradient, which
are described below. Basically, a median filter (after excluding potential
Sargassum-containing pixels determined first from surface fitting) was
used to generate a background Sargassum-free AFAI image, which was
then subtracted from the original AFAI image. Then, a global scope
image based threshold was determined and applied to the entire
image to extract the Sargassum-containing pixels.
4.1.2.1. Preliminary Sargassum pixel extraction based on surface fitting. To
model the large-scale variability, a four-degree surface fitting is usu-
ally sufficient. Higher-degree surface fitting is likely to cause
overfitting, which will hinder the extraction of local bright targets
(i.e., Sargassum-containing pixels). The surface fitting was per-
formed over pixels of valid observations only, with Sargassum-
containing pixels excluded. Because nearshore pixels tend to have
high AFAI values, these pixels were also excluded before surface
fitting. Pixels with AFAI values greater than the fitted value by a
threshold Ts were identified as potential Sargassum-containing
pixels, and were excluded from the median filter creation process
used to determine the Sargassum-free ocean background.

The threshold Ts in the above process was determined from 8 repre-
sentative AFAI images (4 in January and 4 in June). The Sargassum pixels
were first manually delineated from the 8 images, which were then
eroded using a 5 × 5 pixel window to assure the exclusion of Sargas-
sum-containing pixels when creating the median filter. A threshold of
Ts = 2.55 × 10−4 was found to extract up to 95% of the Sargassum-
containing pixels (after erosion), and therefore was used for the entire
dataset. Fig. 6a and d show the original AFAI image and resultant surface
fitted image.
Fig. 6. An example of the Sargassum pixel extraction process. (a) is the original AFAI image after m
AFAI image in (a); (d) is the surface fitted image from (a); (e) and (f) are enlarged regions from
reference; (h) and (i) are the enlarged regions from the RefAFAI image in (g); (j) is the differen
(difference) image in (j). Sargassum-containing pixels are extracted from the difference image
arrow marked the global scope threshold T0 used in this study.
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4.1.2.2. Median filtering to determine ocean background (RefAFAI). The sur-
face fitting derived background image still contains small-scale vari-
ance, therefore requiring a subsequent median filter to refine the
background image. The median filter used a 51 × 51 pixel window to
determine the median value of each pixel from the surface fitted
image. This derived median image was used as the Sargassum-free
ocean background, RefAFAI, to extract Sargassum-containing pixels by
using a global scope threshold, T0.

Adopting the use of a 51 × 51 pixel window (Wsize = 51 pixels) was
based on several considerations. Because large Sargassum slicks do
occur, a minimum Wsize of 31 pixels could be used to fill in the surface
fitting derived bright targets to avoid data loss. In Garcia et al. (2013)
the optimal Wsize was obtained by comparing the standard error of
the means (SEMs) from 10 randomly selected ocean regions. The
SEMs would increase in a nonlinear fashion whenWsize exceeded a cer-
tain value. In this study, randomly selected ocean regions within the
CWA region from 6 representative images were analyzed to determine
an optimal Wsize. The SEMs of these selected ocean regions only de-
creased slowly with decreasing Wsize when Wsize was b51. This sug-
gested that after excluding potential Sargassum-containing pixels from
the surfacefitting process, amedianfilter could be used effectively to re-
move small-scale variations providing a large-scale Sargassum-free
ocean background (RefAFAI, Fig. 6g). Considering the typical size of the
potential Sargassum slicks and computational efficiency, Wsize = 51
was selected for use in the median filter.

4.1.2.3. Final Sargassum pixel extraction using a global scope segmentation
threshold T0. With the Sargassum-free ocean background (RefAFAI) ob-
tained from the two processes above, a global scope threshold T0 was
determined and applied to the entire image to extract the Sargassum-
containing pixels whose AFAI values were higher than the background
values of T0.:

AFAI–RefAFAINT0: ð6Þ
T0 was determined by comparing the cumulative frequency of man-

ually delineated Sargassum-containing pixels and their adjacent pixels
with a dilation of 5 pixels (11 × 11 pixel window). The dataset used to
asking sun glint, clouds, cloud shadows, and land; (b) and (c) are enlarged regions from the
the surface fitted image in (d); (g) is the median-filtered (RefAFAI) image that is used as the
ce image between (a) and (g); (k) and (l) are the enlarged regions from the AFAI-RefAFAI
using the global scope threshold T0. The color bar is for the difference image and the red
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determine T0 was the same as that used to determine the surface fitting
threshold. The logic was also the same: T0 should preserve most of the
manually selected “ground truth” Sargassum-containing pixels while
excluding most of the adjacent Sargassum-free pixels. As marked by
the vertical line in the cumulative frequency distribution (Fig. 5c),
when T0 was selected to be 1.79 × 10−4, about 95% of the Sargassum-
containing pixels were captured while only 10% of the adjacent Sargas-
sum-free pixelsweremisclassified as Sargassum-containing. Aswith any
threshold-based method, the choice of the threshold is always a
compromise between false-positive and false-negative detections. The
sensitivity test below shows that T0 = 1.79 × 10−4 would lead to ac-
ceptable uncertainties in both categories, and would not impact the
overall findings in the long-term trend of Sargassum distributions.

To understand the uncertainties in the extraction results, 12 repre-
sentative MODIS AFAI images (6 from January 2015 and 6 from June
2015), all independent from the dataset used in determining T0, were
used to extract Sargassum-containing pixels following the above proce-
dures, with their results compared to those with manual delineation
(regarded as the “truth”). For the estimates of Sargassum area coverage
using unweighted Sargassum-containing pixels, the false positive rate
was 30.41% and the false negative rate was 15.67%. Due to these uncer-
tainties, a linear unmixing method was developed (see below) and ap-
plied to Sargassum-containing pixels. After weighting the Sargassum-
containing pixels using this linear unmixing method, the false positive
rate decreased to 18.97% and the false negative rate decreased to
7.42%. As shown in Table 1, the overall accuracy, defined by the F-
score (Chinchor & Sundheim, 1993) was 86.05%, and thus acceptable
for time series and trend analysis.

4.2. Step 2: Unmixing of Sargassum-containing pixels to determine
fractional coverage (N0% but ≤100%)

So far, for every AFAI image, each pixel was classified as no-
observation (Class A), Sargassum-free (Class B), or Sargassum-
containing (Class C). For the Sargassum-containing pixels, the next
step is required to determine the fractional coverage through unmixing,
as Sargassum mats can rarely occupy the entire 1-km pixel. This linear
unmixing scheme is used to quantify the percentage of Sargassum cov-
erage within a given pixel. For each Sargassum-containing pixel, its frac-
tional coverage was determined as

AFAIU ¼ AFAIU0– AFAIL0–AFAILð Þ ð7Þ

αi ¼ AFAIAi–AFAILið Þ= AFAIUi–AFAILið Þ � 100%: ð8Þ

where αi is the fractional (percentage) Sargassum coverage (ranging
from 0.0% to 100.0%) for the ith Sargassum-containing pixel, AFAIAi is
the AFAI value of the ith Sargassum-containing pixel (“A” in the sub-
script represents “algae”, i.e., Sargarssum), AFAILi and AFAIUi are the
lower (corresponding to 0.0% coverage) and upper (corresponding to
100.0% coverage) bounds for the ith Sargassum-containingpixel, respec-
tively. AFAIL0 and AFAIU0 are the global scope lower and upper bounds
(image and pixel independent constants) for 0% and 100% sub-pixel
coverage, respectively. AFAIL and AFAIU and are the local lower and
upper bounds, respectively, for the Sargassum patch containing the ith
Sargassum-containing pixel, which may vary among Sargassum patches
and images. Therefore, to determine αi, four parameters are required:
AFAIU0, AFAIL0, AFAIU, and AFAIL.
Table 1
Uncertainty and accuracy assessment of the final Sargassum-containing pixel extraction using

False positive

Area coverage using unweighted Sargassum pixels (AUP) 30.41%
Area coverage using weighted Sargassum pixels (AWP) 18.97%
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To determine AFAIU0, which represents 100% Sargassum coverage
within a pixel, surface reflectance measured from pure Sargassum
mats in the GOM and off Bermuda (Fig. 1b) were used to simulate
Rrc and AFAI as sensed by MODIS through radiative transfer simula-
tions. The collection of these spectra was described in Hu et al.
(2015). The simulation is the same as described in Hu (2009):

Rrc¼RaþtoTRsarg ð9Þ

where Ra is the atmospheric path reflectance due to aerosols and
aerosol-Rayleigh interactions, Rsarg is the mean Sargassum reflec-
tance from field measurements (Fig. 1b), to is the atmospheric dif-
fuse transmittance from the sun to the Sargassum mat, and T is the
atmospheric beam transmittance from the Sargassummat to the sat-
ellite sensor. Because of the atmospheric effects, the same Rsarg, could
result in different Rrc as measured by the satellite. Such effects were
simulated in the following way.

Two solar/viewing scenarios were considered in the simulation,
with one for image center and the other for image edge. Two aerosol
types were considered: maritime aerosols with 90% relative humid-
ity (m90) and coastal aerosols with 50% relative humidity (c50),
representing both open ocean and coastal ocean scenarios. Aerosol
optical thickness at 869 nm, τa(869), was varied between 0.02 and
0.38 (the upper bound for aerosols, Robinson, Franz, Patt, Bailey, &
Werdell, 2003). All variables in Eq. (9) (i.e., Ra, to, T) corresponding
to these different scenarios were determined using the MODIS aero-
sol lookup tables from the SeaDAS data processing software package
(Baith, Lindsay, Fu, & McClain, 2001). Table 2 presents a summary of
the MODIS AFAIU0 values corresponding to all variable atmospheric
conditions and solar/viewing geometry. The 2013–2015 climatolog-
ical mean τa(869) for the CWA region was estimated to be 0.10. The
mean value corresponding to τa(869) = 0.10, 4.41 × 10−2, was used
in this study to represent the global AFAIU0 for 100% Sargassum cov-
erage within a pixel. Note that for an individual Sargassum slick, the
local upper bound was adjusted using Eq. (7) to account for variable
atmospheric and observing conditions.

To determineAFAIL0, a histogramof AFAI values fromall water pixels
near these Sargassum slicks (6 pixels outward from the slick edges) was
generated. The median value was determined to be −8.77 × 10−4 and
was assigned to AFAIL0 to represent 0% Sargassum-containing coverage.
Here themedian value is selected to avoid noise interference in calculat-
ing the lower bound. For each Sargassum patch, the local AFAIL was also
determined using the same method. The local AFAIU was derived using
Eq. (7) by normalizing the global AFAIU0 against the difference between
AFAIL0 and AFAIL. These values were then used in Eq. (8) to calculate
sub-pixel coverageαi for each of the Sargassum-containing pixels with-
in a Sargassum patch. This methodwas applied in a loop through all Sar-
gassum patches within an image. Fig. 7a, b, c, and d show an example of
the process for extracting Sargassum-containing pixels and determina-
tion of sub-pixel coverage.

4.3. Step 3: Data binning to derive distribution and area coverage maps

After obtaining the sub-pixel coverage of each Sargassum-containing
pixel from all images, the entire study region was divided into
0.5° × 0.5° grids to generatemeandistributionmaps at different time in-
tervals (monthly, seasonal, and annual). For each grid, mean fractional
Sargassum coverage within a particular time interval was calculated
sample images in January and June 2015.

False negative Precision Recall F score

15.67% 72.80% 81.38% 76.85%
7.42% 82.57% 89.84% 86.05%
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Table 2
MODIS AFAI upper bound values (i.e., corresponding to 100% Sargassum coveragewithin a pixel) for various atmospheric conditions (aerosol type and optical thickness) and solar/viewing
geometry, based on Eq. (9) and radiative transfer simulations.

m90 τa(869)

0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38

θ=4° 0.052 0.050 0.048 0.045 0.043 0.041 0.040 0.038 0.036 0.034
θ=57° 0.049 0.046 0.042 0.039 0.036 0.033 0.030 0.028 0.026 0.024

c50 τa(869)

0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38

θ=4° 0.052 0.049 0.046 0.044 0.042 0.039 0.037 0.035 0.033 0.031
θ=57° 0.049 0.045 0.041 0.037 0.033 0.030 0.027 0.025 0.022 0.020

Note: Two aerosol types are selected for open and coastal oceans: maritime aerosols with 90% relative humidity (m90) and coastal aerosols with 50% relative humidity (c50). Two solar/
viewing scenarios are applied: near satellite nadir (satellite zenith θ= 4°, solar zenith θ0 = 18.4°, relative azimuth ϕ=22°) and near scan edge (θ= 57°, θ0 = 29°, ϕ=21°). τa(869) =
0.10 corresponds to the mean aerosol optical thickness over the study region between 2013 and 2015 as derived from MODIS. The average of these values for τa(869) = 0.10 is 4.41 ×

10−2, (bold font), which was used in this study as the global upper bound for pure Sargassum coverage.
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from all Sargassum-containing (NA) and Sargassum-free pixels (Nw) fall-
ing in that grid as

f ¼ 1
N

XN

i¼0
αi

h i
ð10Þ

N ¼ NA þNW ð11Þ

where the summationwas for all Sargassum-containing and Sargassum-
free (i.e., water) pixels in that grid within the time interval, with αi =
0.0 for water pixels. The mean area coverage maps were generated
after integrating all grids. The general process is illustrated in Fig. 7.
Fig. 7. The process used to generate the monthly mean Sargassum area coverage maps using or
(b). These pixels are dilated to find the nearest water pixels (dark blue color around the Sargas
used to calculate (d), the required input to generatemonthly means for the predefined grids. Th
illustrated.
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5. Results: Long-term Sargassum distribution and coverage

The above methods were applied to the entire time series be-
tween 2000 and 2015, where 17,772 MODIS AFAI images (9013 be-
tween 2009 and 2015) were used to generate the Sargassum
distribution and coverage maps over the CWA region at monthly,
seasonal, and annual intervals. The threshold values were selected
as: T0 = 1.79 × 10−4, AFAIU0 = 4.41 × 10−2, and
AFAIL0 = −8.77 × 10−4.

Fig. 8 presents the distributions ofmonthlymean coverage of Sargas-
sum in the study region between 2000 and 2015. The color-coded value
represents the monthly mean percentage of Sargassum coverage for a
iginal AFAI images. The AFAI image in (a) is used to extract Sargassum-containing pixels in
sum patches in (c)) to be used to calculate AFAIL for each Sargassum patch. (b) and (c) are
e calculation of themean Sargassum coverage for a grid during the time interval month) is
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Fig. 8.Monthlymean distributionmaps show Sargassum area coverage in the CWA region between 2000 and 2015, derived fromMODIS AFAI images using the approach developed in this
paper. Land ismasked to black and coastline ismasked towhite. TheNovembermonthlymean in 2015 contains data up to 21 November 2015. Because the results for 2000–2009 are very
similar (and they all show minimal Sargassum coverage), for clarity the distribution maps between 2001 and 2008 are omitted.
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Fig. 8 (continued).

11M. Wang, C. Hu / Remote Sensing of Environment xxx (2016) xxx–xxx
given grid, varying from 0% to about 0.4%. Because the results for 2000
through 2009 are very similar and they all show minimal Sargassum
coverage, for clarity the distribution maps between 2001 and 2008 are
Please cite this article as: Wang, M., & Hu, C., Mapping and quantifying Sa
MODIS observations, Remote Sensing of Environment (2016), http://dx.doi
omitted here. During that period, small numbers of Sargassum slicks oc-
casionally appeared off the Amazon River mouth between August and
October, and the daily time sequence indicated northward movement.
rgassum distribution and coverage in the Central West Atlantic using
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Table 3
Annual mean Sargassum coverage over the CWA region between 2009 and 2015. The an-
nual mean coverage between 2000 and 2008 was similar to those in 2009, thus not listed
in the table.

Year 2009 2010 2011 2012 2013 2014 2015

Mean fractional
coverage (%)

0.02 0.03 0.07 0.08 0.02 0.12 0.32

Mean area coverage
(km2)

59.6 83.5 199.5 232.1 66.5 375.1 956.2
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However, they did not develop into large-scale blooms during those
periods.

Large amounts of Sargassum slicks did not appear until April 2011
when they were captured in MODIS AFAI imagery around 3.0° N and
40°W. These Sargassum slicks then developed and advected to the Less-
er Antilles Islands in the southern Caribbean from May to July. This
agrees well with the timing of the reported Sargassum beaching events
in those islands. From August to September, massive Sargassum slicks
started to decrease. Some Sargassum slicks still appeared off theAmazon
River mouth later in October and November, but their sizes were much
smaller.

In 2012, Sargassum distribution patterns closely resembled those
found in 2011 except for the scattered slicks in the first months of
2012 around 18°N which were apparently left over from the 2011
bloom. During July, most of Sargassum slicks appeared between 5°N
and 10°N. Unlike 2011, August 2012 experienced a significant de-
crease of the total Sargassum coverage, after which only small
amounts of scattered Sargassum slicks were found off the Amazon
River mouth.

One interesting result is that after September 2012 and for the entire
year of 2013, very few Sargassum slicks were found until April 2014,
after which Sargassum distribution patterns nearly repeated those
found during the summers of 2011 and 2012 but with greater abun-
dance. The difference between 2014 and these two previous years is
that between September and December 2014, there were still consider-
able numbers of Sargassum slicks, which continued to appear through
the early months of 2015.

Themost striking result was found in the extremely anomalous year
of 2015. Not only did the Sargassum slicks appear from the very begin-
ning of the year—whichwere again, apparently, left over from the pre-
vious year's bloom, but the Sargassum coverage during the spring and
summer months was much greater than in any previous year. As of Oc-
tober and November of 2015, there were still considerable amounts of
Sargassum in the offshore waters. This is analogous to conditions
found in the samemonths of 2014, thus posing the question of whether
similar extreme Sargassum blooms may occur in 2016.

The same method was used to generate seasonal and annual mean
distribution maps. From these maps, the total area coverage was calcu-
lated to integrate Sargassum mean area coverage from all grids. While
Fig. 9.Mean Sargassum area coverage at seasonal (a) andmonthly (b) scales between 2009 and
and 2010, and thus omitted.
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Table 3 presents a summary of the integrated annual mean area cover-
age between 2009 and 2015, Fig. 9 shows the time series of the integrat-
ed monthly and seasonal mean coverage. These statistics provide a
quantitative measure of the amount of Sargassum in the CWA region
at monthly, seasonal, and annual scales. The distribution maps in Fig. 8
closely resemble the time series which clearly shows the anomalous
years of 2011, 2012, 2014, and 2015. Most striking is that 2015 is an ex-
treme year when both the annual mean coverage and summer mean
coverage were 4 times of those found in 2011, and the summer mean
coverage exceeded those in the pre-bloom years (2009 and 2010) by
20 times.

6. Discussion

While this is the first time that long-term Sargassum distribution
maps and coverage statistics are presented by applying a sophisticated
but objective methodology toMODIS observations, two questions natu-
rally arise from these results. The first is howmuch can they be trusted?
The second is, if they are trusted, what caused these long-term pat-
terns? Due to the lack of field measurements, neither is easy to address.
However, from spectral analysis, sensitivity analysis, and the analysis of
several environmental variables, the following discussion may provide
some useful hints.

6.1. Sargassum or other floating materials?

From the perspective of spectroscopy, it is difficult to conclude that
the observed red-edge reflectance (i.e., elevated AFAI values) is due to
Sargassum instead of other floating vegetation. Using multi-sensor
data and simulations, Hu et al. (2015) suggested that unless hyperspectral
data are used, it is very difficult to differentiate Sargassum from other
floating vegetation, as the latter also show elevated AFAI values. This is
particularly true when the sub-pixel coverage is very small (b25%).
Therefore, currently there is no way to validate all observed slicks from
the AFAI imagery. However, two facts can help confirm that the observed
slicks are mostly, if not all, Sargassum.

The first is scarce validation using the Hyperspectral Imager for the
Coastal Ocean (HICO) observations. Hu et al. (2015) showed that corre-
sponding to some of the MODIS-observed slicks, HICO spectra of the
same slicks showed diagnostic spectral curvature around 630 nm due
to chlorophyll c absorption. This is a unique feature for Sargassum
macroalgae, thus confirming that at least some of the slicks observed
from theMODIS AFAI imagery are indeed Sargassum. Likewise, the spec-
tral curvature between reflectance of blue and green bands (Hu et al.,
2010b) from randomly selected dense slicks (high AFAI values) did
not reveal spectral characteristics of Trichodesmium mats, confirming
that at least these randomly selected dense slicks were not
Trichodesmium but likely Sargassum.
2015 for the CWA region. The statistics between 2000 and 2008 are similar to those in 2009
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Local news reports from the Lesser Antilles Islands provide another
indirect source of evidence. In 2011, 2012, 2014, and 2015, there were
numerous new reports of Sargassum beaching on these islands,
supporting the findings here. In particular, the news exposure increased
tremendously in 2015, also supporting the statistical results that show
2015 as an extreme year.

Given the direct and indirect evidences, it is believed that most of
these observed slicks, if not all, are Sargassum macroalgae. However,
this does not mean that a field survey is not needed to further validate
the observations here, particularly when area coverage estimations
are to be made.

6.2. Uncertainties in the estimation of mean Sargassum area coverage

6.2.1. Sensitivity analysis
Several thresholds were used throughout the entire process to de-

rive the final mean area coverage maps, which included Tc in the LLR
cloud shadow masking, the global scope segmentation threshold T0 to
determine Sargassum-containing pixels, and AFAIU0 andAFAIL0 to deter-
mine sub-pixel Sargassum coverage. To understand the sensitivity of the
final results to changes in these threshold values, a total of 187 AFAI im-
ages fromMODIS Aqua and Terra in January and June 2015 were select-
ed to generate the monthly mean area coverage maps with different
combinations of variable threshold values.

Fig. 10a shows the comparison between the three choices for cloud
shadow determination: no masking, LLR masking (this study), and
cloud-edge dilation (6 pixels) masking. The global scope AFAIU0 and
AFAIL0 were set as the default (4.41 × 10−2 and −8.77 × 10−4). Com-
pared to a proper masking method, no masking led to overestimated
total Sargassum area coverage because some of the cloud shadow pixels
were misclassified as Sargassum. The dilation-based cloud-masking
method overestimated total Sargassum coverage even more because
Fig. 10. Sensitivity ofmean Sargassum area coverage (km2) in January and June2015 todifferent
and upper bounds (c and d). The red dashed lines indicate the threshold values selected in this s
reader is referred to the web version of this article.)
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the total number of valid observations (N in Eq. (11)) was significantly
reduced in June when large Sargassum coverage appeared. Indeed, a 6-
pixel dilation led to up to 60% of data loss of total number of valid obser-
vations from individual images in this analysis.

To assess the effect of T0 on the estimation of mean Sargassum area
coverage, T0 was varied between 1.28 × 10−4 and 2.55 × 10−4, with
mean Sargassum area coverage estimated for each T0 (Fig. 10b). As ex-
pected, the estimated mean area coverage decreased with increasing
T0. For June 2015, the mean Sargassum area coverage decreased by
~10% when T0 was changed from 1.53 × 10−4 to 1.79 × 10−4. A ~19%
percentage decrease was observed for January of 2015. However,
while the absolute area coverage changed with T0, the seasonal and
long-term patterns remained stable.

The estimates of monthly mean Sargassum area coverage were
also sensitive to changes in AFAIL0 and AFAIU0. When AFAIL0 was var-
ied, AFAIU0 was set to be the default value (4.41 × 10−2). When
AFAIU0 was varied, AFAIL0 was set to be the default value
(−8.77 × 10−4). Fig. 10c shows that when AFAIL0 is increased, the
mean Sargassum area coverage for January and June 2015 both in-
creased slightly. Increasing the low bound from −8.77 × 10−4 to
6.21 × 10−4 results in larger estimation of ~0.57% for June 2015. As
expected, Fig. 10d shows that when AFAIU0 was increased, the
mean area coverage for January and June 2015 also decreased. Simi-
larly, an increase of the AFAIU0 bound from 4.414 × 10−2 to
4.440 × 10−2 leads to a 0.44% decrease in the mean area coverage
in June 2015. Since the range between AFAIU0 and AFAIL0 is up to
~4.4 × 10−2, adjustment of the AFAIU0 and AFAIL0 at scale of
1 × 10−4 will both result in minimal changes.

Although the absolute value of the area coverage changes with these
changing threshold values, the relative long-term patterns are insensi-
tive to changes in the thresholds. For example (Fig. 11 shows T0 varying
from 1.28 × 10−4 to 2.30 × 10−4), while the monthly mean area
cloud shadowmaskingmethods (a), different segmentation thresholds (b), different lower
tudy for time series analysis. (For interpretation of the references to color in thisfigure, the
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Fig. 11. Monthly mean Sargassum area coverage during 2014 generated with different
global scope threshold T0. In this study, T0 = 1.79 × 10−4 was selected to generate
time-series statistics.
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coverage decreased in all months of 2014, the temporal patterns
remained nearly identical. Furthermore, the absolute area coverage ap-
peared less sensitive to T0 when T0 was 1.79 × 10−4. Therefore, a T0 of
1.79 × 10−4 was selected in this study. In the future, field-based mea-
surements may be used to help determine this threshold. At present,
the results presented here represent the best knowledge one can obtain
fromMODIS observations and, even in the worst-case scenario, the rel-
ative temporal patterns as well as the distribution maps still remain
valid.

6.2.2. Detection limit
The MODIS pixels used in this study have a ground resolution of

1 km,making it difficult to observe small Sargassum rafts. Using simula-
tions and assuming 200:1 SNR,Hu et al. (2015) suggested that the lower
detection limit of the red-edge reflectance is about 1–2% of a pixel size.
However, the MODIS band used in examining the red-edge reflectance,
the 748-nmband, has a SNRof 995:1 (Hu et al., 2012) under typical con-
ditions. This would certainly enable MODIS AFAI to detect Sargassum
rafts smaller than 1% of a pixel size. Manual analysis of delineated
AFAI slicks with weak signals indicated that the detectable limit would
be ~0.2% of a MODIS 1-km pixel. This is 5 times more sensitive than
the estimates from the 200:1 SNR assumption. Correspondingly, a Sar-
gassum raft with an effective width of N2 m and effective length of
N2 km long is observable in MODIS AFAI imagery. Smaller Sargassum
rafts are simply not observable.

6.2.3. Uncertainties due to non-optimal observing conditions
Many factors can impact satellite observations of surface slicks of

Sargassum. For near real-time observations, clouds, severe sun glint,
cloud shadows, and other artifacts simply make many pixels unusable,
presenting a major hurdle for near real-time Sargassum tracking. How-
ever, these pixels are not counted in long-term statistics, thus would
have minimal impacts on the statistical results once sufficient number
of images is used in the statistics. On the other hand, non-optimal ob-
serving conditions such as variable winds and currents may have signif-
icant impacts on the statistical results (Gower&King, 2011;Marmorino,
Miller, Smith, & Bowles, 2011; Szekielda, Marmorino, Bowles, & Gillis,
2010;Woodcock, 1993). Under high winds, Sargassummay be dissipat-
ed and become undetectable to MODIS imagery while they may still be
observed in high-resolution airborne imagery or field sampling through
neuston net tows. Attempts were made to determine the optimal wind
range from sequential images, however mixed results were obtained.
When wind speed was N7 m s−1, Sargassum tended to be undetectable
in MODIS imagery. However, this threshold could not be generalized,
and therefore was not applied to screen data. In this sense, because Sar-
gassum aggregate ormat size is important to Sargassum coverage or bio-
mass estimates (Dierssen et al., 2015), the results obtained here are
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likely underestimates and they represent only those Sargassum slicks
observable byMODIS. In other words, the absolute area coverage values
represent lower bound of Sargassum coverage. Regardless, the lack of
significant inter-annual variability or wind speed trends suggests that
wind should not impact the observed distribution patterns and tempo-
ral area coverage changes (Hu et al., 2015, 2016).

6.3. Causes of the Sargassum bloom since 2011

Before satellites were used to map and quantify Sargassum blooms
(Gower et al., 2006), assessment of Sargassum biomass was based on
shipboard observations only (Butler, Morris, Cadwallader, & Stoner,
1983; Butler & Stoner, 1983; Huffard, von Thun, Sherman, Sealey, &
Smith, 2014; Parr, 1939; Schell, Goodwin, & Siuda, 2015; Siuda, Schell,
& Goodwin, 2016; Stoner, 1983). Most of these shipboard observations
were focused on the Sargasso Sea, where no significant Sargassum bio-
mass changes were found between 1933 and 1981 (Butler & Stoner,
1984). Recently, Schell et al. (2015) found Sargassum morphological
changes in the Caribbean. Yet these shipboard surveys relied on neuston
net tows that may havemissed large Sargassum rafts as captured by syn-
optic and frequent satellite measurements. Then, what could cause the
sudden increase in these MODIS-observed Sargassum coverages after
2011?

While it is extremely difficult to pinpoint the exact reason of a large-
scale oceanic phenomenon, a preliminary effort was attempted to ex-
plain the observed long-term changes. We fully recognize that a thor-
ough understanding requires multi-disciplinary efforts to analyze both
physical and biological forcing, yet analysis of several environmental
variables may provide some hints to address the following questions:
Where do the Sargassum slicks originate? And, what caused the recent
increases in the area coverage?

Indeed, although theMODIS statistics started in 2000, there is no re-
cord in either local newspaper or in fishermen's memory of any major
Sargassum beaching event for the past 50–60 years prior to 2011 (Dr.
Jean-Philippe Maréchal, Caribbean Global Coral Reef Monitoring Net-
work (GCRMN) advisor, personal comm.), suggesting that there might
be a significant change in the local environment in the past half century.

Daily image sequences were examined to determine the potential
origin of the Sargassum slicks, similar to the methodology used in Hu
and He (2008), to determine the origin of the Ulva bloom off Qingdao
(China) in the Yellow Sea. Although several sequences did reveal the
first appearance of Sargassum slicks and their temporal movements, it
is hard to conclude that they originated from the location where they
first observed. This may be due to the fact that many small Sargassum
slicks are unlikely to be captured by coarse pixels resolution (Hu et al.,
2015). It is more likely that Sargassum originates in a certain location,
moves, and is detectable in MODIS AFAI imagery only when surface ag-
gregation results in large, observable slicks (N2mwide and N2 km long,
see Section 6.2.2). Thus, this effort did not lead to any solid inference on
the origin of Sargassum slicks. On the other hand, recent shipboard ob-
servations showed that Sargassum in the CWA region in 2015 had a dif-
ferent dominant form than in the Sargasso Sea, suggesting that the
Sargasso Sea is unlikely to be the source region (Schell et al., 2015).
This is supported by hindcast numerical models, which suggested that
Sargassum may bloom in the north equatorial recirculation region
(NERR) due to favorable environmental conditions (Johnson, Ko,
Franks, Moreno, & Sanchez-rubio, 2013).

Excessive nutrient supply may be responsible for the increase in
Sargassum biomass (Smetacek & Zingone, 2013). Could the temporal
patterns be related to the Amazon River discharge and associated
river plume? Fig. 12 shows that between May and August 2015
(the maximum Sargassummonths in the maximum year), Sargassum
slicks did appear in the vicinity of the Amazon plume (where the
plume was inferred from elevated Kd490 values from the monthly
mean Kd490 images. This is because Kd490 is highly correlated
with colored dissolved organic matter rich in river plume, Hu,
rgassum distribution and coverage in the Central West Atlantic using
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Fig. 12. MODISA monthly mean diffuse attenuation coefficient at 490 nm (Kd490, m−1) from May to August 2015, overlaid with Sargassum coverage (red area in the top row and red
outline in the bottom row). Here the Sargassum coverage is defined as fractional coverage N0.05%.
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Montgomery, Schmitt, & Muller-Karger, 2004). This, however, could
simply be a coincidence as both the plume and the Sargassum slicks
were driven by the same ocean currents. Indeed, the Amazon River
Fig. 13.Monthlymeanvalues of several environmental variables over the CWA region. (a) Sea Su
(d) precipitation rate; (e) Amazon River discharge anomaly; (e) aerosol optical depth (AOD).
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discharge (Fig. 13e) and the Sargassum area coverage does not ap-
pear to be correlative, suggesting that river discharge might not be
the dominant reason for increased bloom activity.
rface Temperature (SST); (b) Photosynthetic Available Radiation (PAR); (c) cloud fraction;

rgassum distribution and coverage in the Central West Atlantic using
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Fig. 14. Annual mean Sargassum coverage (km2) over the CWA region estimated from
MODIST, MODISA, and MODIST/MODISA combined. The 2015 data contains data
through 21 November 2015.
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Analysis of other environmental variables indicated that although
PAR and cloud fraction did not show any apparent correlation with
the Sargassum temporal patterns, a combination of SST, precipitation,
and AOD might explain some of them. For example, precipitation was
much higher in 2010 and 2011 than in other observable years. The
higher than usual precipitation may have brought additional nutrients
(iron) from aerosols (dust) to the surface ocean (Paerl et al., 1999), fa-
voring Sargassum growth in the following years (2011 and 2012). The
winter of 2014 showed lower SST (~0.4 °C lower than monthly mean
climatology), possibly associated with stronger upwelling (or deeper
mixing) than other years (Black et al., 1999; Peterson, Haug, Hughen,
& Röhl, 2000; Weingartner & Weisberg, 1991) or with more African
dust according to the correlation of North Atlantic SST with African
dust proposed by Wang, Dong, Evan, Foltz, and Lee (2012) using a
dataset back to 1950's (whichmay be excluded as no significant change
in AOD is detected in Fig. 13f), providing more nutrients to Sargassum
and resulting in blooms in 2014 and 2015. The same mechanism could
also be used to explain the 2011 and 2012 blooms as SST in these two
years was also lower than in other years. Therefore, the following hy-
pothesis may be generalized from these visual interpretations: while
the origin of the Sargassum is still unclear, the 2011 and 2012 blooms
appear to be a result of the combined effect of higher precipitation
(more atmospheric nutrients) and lower SST (deeper mixing or stron-
ger upwelling), and the 2014 and 2015 blooms appear to be the result
of deepermixing or strong upwelling. AOD shows a strong seasonal pat-
tern with more dust input in summer and less in winter (corresponds
well with the annual cycle of African dust transport to the Caribbean
Basin as mentioned in Prospero, Collard, Molinié, & Jeannot, 2014).
This is positively correlated with the Sargassum temporal patterns in
Fig. 9, suggesting dust input may stimulate Sargassum growth. Regard-
less, the exact mechanisms leading to the annual fluctuations and the
2015 anomaly in Sargassum coverage will still require a significant
amount of multi-disciplinary effort to resolve. In themeantime, the dis-
tribution maps in Fig. 8, the long-term temporal patterns in Fig. 9, and
those obtained from historical and recent shipboard observations
(Butler & Stoner, 1983; Butler et al., 1983; Parr, 1939; Schell et al.,
2015; Siuda et al., 2016; Stoner & Greening, 1984), may serve as guides
on how to perform such a multi-disciplinary investigation.

6.4. Continuity and other considerations

The distribution patterns and long-term trends of Sargassum cover-
age, as revealed in Figs. 8 and 9, suggest that it is likely that Sargassum
blooms may occur in future years. Given aging MODIS instruments
(they were both designed for 5-year mission life but have been opera-
tional for N13 years), the question is whether the observations can be
continued if one or both MODIS instruments cease to function? In
other words, is one instrument enough? And, if both fail, what other in-
struments can be used?

To address these questions, statistics were generated from indi-
vidual MODIS instruments and compared with those from combined
observation platforms. Between 2009 and 2015, 9013 AFAI images
were used to generate the statistics, of which 4953 were from
MODISA and 4060 were from MODIST. Fig. 14 shows that when
MODIST and MODISA were used separately, the estimated annual
mean Sargassum coverage was nearly identical between 2009 and
2013, but showed slight differences (b20%) from the coverage esti-
mates in 2014 and 2015 when both satellite platforms were com-
bined. Thus, if and when one of instruments stops functioning in
the future, reliable statistics can still be generated from the other
one, with potentially b20% uncertainty as referenced against the
combined observations.

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument
has provided daily data since 2012. VIIRS has all required spectral
bands to calculate a VIIRS AFAI. In addition, a VIIRS swath width
(3000 km) is greater than a MODIS swath (2330 km), providing
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more data coverage than a single MODIS instrument. Therefore,
even if both MODISA and MODIST stop functioning, VIIRS can be
used to continue the Sargassum observations. Once proper cross-
sensor calibration is achieved, VIIRS is expected to provide a seam-
less data record for the foreseeable future. The Ocean Land Colour In-
strument (OLCI) onboard the Sentinel-3 satellite was launched on 16
February 2016. As a MERIS-heritage sensor (300-m resolution, 1400-
km swath) but with more spectral bands (from 15 of MERIS to 21 of
OLCI, Donlon et al., 2012), OLCI is also capable of providing AFAI and
MCI products once data become available. We expect to perform the
cross-sensor calibration on these sensors and generate VIIRS and
OLCI AFAI data products soon.

The Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) mission is
currently planned at NASA (http://pace.gsfc.nasa.gov), with the
aim of providing hyperspectral data at similar coverage and revisit
frequency of MODIS. Such a hyperspectral mission is expected to
not only provide continuity observations from MODIS and VIIRS
but more importantly to provide diagnostic capacity to differentiate
Sargassum from other floating materials (Dierssen et al., 2015; Hu
et al., 2015). Likewise, NASA's Hyperspectral InfraRed Imager
(HyspIRI) mission (Lee et al., 2015) and Geostationary Coastal and
Air Pollution Events (GEO-CAPE) mission (Fishman et al., 2012)
will both have hyperspectral capacity for spectral diagnostics. In par-
ticular, the GEO-CAPE mission on a geostationary platform will en-
able multiple images a day at the same location, making it easier to
avoid cloud cover and to track Sargassum movement using sequen-
tial images. This feature has been demonstrated already for tracking
blooms of the green macroalgae U. prolifera in the Yellow Sea using
the Geostationary Ocean Color Imager (GOCI) (Son, Min, & Ryu,
2012). Furthermore, the future Geostationary Operational Environ-
mental Satellites – R Series (GOES-R) series will have two spectral
bands in the red (640 nm) and NIR (860 nm), respectively, with a
ground resolution of 1 km (Schmit et al., 2005). Once proven with
sufficient SNRs, the GOES-R series may provide more frequent data
than any other sensors to monitor and track Sargassum blooms.

The dailyMODIS images have already served as useful guides to local
residents of the Lesser Antilles Islands as well as other regions in the
Intra-Americas Sea, and helped management agencies to prepare for
Sargassum beaching events. Compared to the Sargassum Early Advisory
System (SEAS) to forecast Sargassum beaching events using LANDSAT
imagery (30-m resolution) and other ancillary data (Webster &
Linton, 2013), the daily MODIS images have coarser spatial resolution
but higher revisit frequency and more spatial coverage, thus enabling
the derivation of long-term and large-scale perspectives on the size
and trend of Sargassum blooms. Although it is difficult to pinpoint the
reason of the recent blooms, one may still conclude that the blooms
were not due to local pollution but to large-scale atmospheric and oce-
anic forcing, possibly related to weather fluctuations and climate
change. The findings here may therefore provide unprecedented
rgassum distribution and coverage in the Central West Atlantic using
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information to help local residents to adapt and prepare for future Sar-
gassum beaching events in a changing climate in order to sustain tour-
ism and a healthy economy.

7. Conclusions

An objective method has been developed to quantify Sargassum dis-
tributions and area coverage fromMODIS observations. TheMODIS data
were then used to generate distribution maps and area coverage be-
tween 2000 and 2015 over the Central West Atlantic region. While
some of these results were reported previously using MERIS observa-
tions up to 2011 using a differentmethod, this is thefirst time that a lon-
ger time series has been objectively developed which has revealed
unprecedented Sargassum coverage patterns after 2011 ever since
MODIS was put in orbit in 2000. In particular, Sargassum coverage in
2014 and 2015 was found to be significantly higher than in any previ-
ously observable year, with 2015 being the extremely anomalous year.
Although it is currently difficult to pinpoint the reasons for these chang-
es, the findings here may provide guidance on future multi-disciplinary
studies to understand their origin, causes, and possible consequences to
the ocean environment.

Wewant to emphasize that the data processing required to generate
the statistics from low-level MODIS data is computationally expensive.
Our initial effort was therefore dedicated to methodology development
with the focus on the CWA region only. Our next step is to extend this
methodology to the entire Intra-Americas Sea (including Caribbean
Sea and Gulf of Mexico et al.), the Sargasso Sea, and the entire tropical
Atlantic. Combined with ocean circulation and other data, a larger pic-
ture than presented here may provide more information to solve the
puzzle of Sargassum origin, bloom transport, and future trends in a
changing climate.

Notations

AFAI Alternative Floating Algae Index
AIRS Atmospheric Infrared Sounder
AOD Aerosol optical depth
AUP Area coverage using unweighted Sargassum Pixels
AWP Area coverage using weighted Sargassum Pixels
CWA Central West Atlantic (0 – 22°N, 63 – 38°W)
FAI Floating Algae Index
GEO-CAPE Geostationary Coastal and Air Pollution Events
GOCI Geostationary Ocean Color Imager
GOES-R Geostationary Operational Environmental Satellites – R

Series
GOM Gulf of Mexico
HICO Hyperspectral Imager for the Coastal Ocean
HyspIRI Hyperspectral InfraRed Imager
ITCZ Inter Tropical Convergence Zone
LLR Local Low Reflectance
LTR Local Total Reflectance
MERIS Medium Resolution Imaging Spectrometer (2002−2012)
MCI Maximum Chlorophyll Index (MCI)
MODIS Moderate Resolution Imaging Spectroradiometer (2000 – on

Terra; 2002 – on Aqua)
MODISA MODIS/Aqua
MODIST MODIS/Terra
NASA National Aeronautics and Space Administration
NDAI Normalized Difference Algae Index
NDVI Normalized Difference Vegetation Index
NERR North Equatorial Recirculation Region
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
OI Optimum Interpolation
OLCI Ocean and Land Color Instrument
OMI Ozone monitoring instrument
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PACE Pre-Aerosol, Cloud, and ocean Ecosystem mission
PAR Photosynthetically Available Radiation
Rrc Rayleigh-Corrected Reflectance
SAI Scale Algae Index
SeaDAS SeaWiFS Data Analysis System
SEAS Sargassum Early Advisory System
SeaWiFS Sea-viewing Wide Field-of-view Sensor (1997–2010)
SEMs Standard Error of the Means
SNR Signal to noise ratio
SST Sea Surface Temperature
SWIR Short-Wave Infrared
T0 Global scope segmentation threshold
Tc Threshold for cloud shadow detection using the LLRmasking
Ts Threshold for preliminary Sargassum-containing pixel

extraction based on surface fitting
TOA Top-of-atmosphere
TRMM Tropical Rainfall Measuring Mission
VAS Virtual Antenna System
VIIRS Visible Infrared Imaging Radiometer Suite
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