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1)Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami,
Florida 33149, USA
2)Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami,
Miami, Florida 33149, USA
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We present results from an experiment designed to better understand the mechanism by which ocean cur-
rents and winds control flotsam drift. The experiment consisted in deploying in the Florida Current and
subsequently satellite tracking specially designed drifting buoys of varied sizes, buoyancies, and shapes. We
explain the differences in the trajectories described by the special drifters as a result of their inertia, primarily
buoyancy, which constrains the ability of the drifters to adapt their velocities to instantaneous changes in
the ocean current and wind that define the carrying flow field. Our explanation of the observed behavior
follows from the application of a recently proposed Maxey–Riley theory for the motion of finite-size particles
floating at the surface ocean. The nature of the carrying flow and the domain of validity of the theory are
clarified, and a closure proposal is made to fully determine its parameters in terms of the carrying fluid system
properties and inertial particle characteristics.

PACS numbers: 02.50.Ga; 47.27.De; 92.10.Fj

I. INTRODUCTION

The assessment of motions of floating matter in the
ocean is of importance for a number of key reasons. These
range from improving search-and-rescue operations at
sea1,2; to better understanding the drift of flotsam of
different nature including macroalgae such as Sargas-
sum3? ,4, plastic litter5,6, airplane wreckage7,8, tsunami
debris9,10, sea-ice pieces11, larvae12,13, and oil14,15; to
better interpreting “Lagrangian” observations in the
ocean16,17. At present, largely piecemeal, ad-hoc ap-
proaches are taken to simulate the effects of ocean cur-
rents and winds on the drift of floating objects. A sys-
tematic approach ideally founded on first principles is
needed. In an effort to contribute to building one, sev-
eral experiments that involved the deployment and sub-
sequent satellite tracking of specially designed drifting
buoys of varied sizes, buoyancies, and shapes were car-
ried out in the North Atlantic.

In this work we report results of the first experiment in
the Florida Current. The drifters were deployed at once
in coincidental position, off the southeastern coast of the
Florida Peninsula. The differences in their trajectories
are here explained as resulting from inertial effects, i.e.,
those due to the buoyancy and finite size of the drifters,

a)Electronic mail: jolascoaga@miami.edu

which prevent them from instantaneously adjusting their
velocities to changes in the carrying ocean current and
wind fields. This is done by making use of a recently
proposed framework for surface ocean inertial particle
motion18, which is derived from the Maxey–Riley set19,
the de-jure framework for the study of inertial particle
dynamics in fluid mechanics20–22.

The standard Maxey–Riley set19 is a classical mechan-
ics second Newton’s law that approximates the motion
of inertial particles immersed in a fluid in motion. As
such, it is given in the form of an ordinary differential
equation, rather than a partial differential equation that
would result from the exact formulation of the motion,
which involves solving the Navier–Stokes equation with a
moving boundary. The latter is a formidable task which
would hardly provide as much insight as the analysis of
an ordinary differential equation can provide.

The type of insight that analysis of the Maxey–Riley
set can lead to includes foundation for realizing that the
motion of neutrally buoyant particles should not syn-
chronize with that of fluid particles, irrespective of how
small23–25. Additional insight includes that which fol-
lowed from earlier geophysical adaptions of the Maxey–
Riley set, to wit, the possible role of mesoscale eddies as
attractors of inertial particles26,27 and the tendency of
the latter to develop large patches in the centers of the
subtropical gyres17.

It is important to stress that the Maxey–Riley model-
ing framework for inertial particle motion on the ocean
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surface18 is quite different than the so-called leeway mod-
eling approach of search-and-rescue applications at sea28.
In such an approach, widely used for its simplicity7,29,30,
windage effects on objects are modeled by means of a
velocity resulting from the addition of a small fraction of
the wind field, established in an ad-hoc manner, to the
surface ocean velocity

The rest of the paper is organized as follows. Sec-
tion II describes the field experiment. The Maxey–Riley
set for inertial ocean particle dynamics derived by Beron-
Vera, Olascoaga, and Miron 18 is presented in Section III
(with details deferred to Appendix A) and clarified in
Section IV with respect to the nature of the carrying
flow, its domain of validity, and parameter specification.
Section V describes the application of the Maxey–Riley
framework to explain the behavior of each drifter type
during the field experiment. Finally, Section VI offers a
summary and the conclusions of the paper.

II. THE FIELD EXPERIMENT

The field experiment consisted in deploying simulta-
neously objects of varied sizes, buoyancies, and shapes
on 7 December 2017 at (79.88◦W, 25.74◦N), situated
off the southeastern Florida Peninsula in the Florida
Current, and subsequently tracking them via satellite.
These buoys will be referred to as special drifters to
distinguish them from other more standardized drifter
designs such as those from the Global Drifter Program
(GDP). The special drifters were designed at the Na-
tional Oceanic and Atmospheric Administration’s At-
lantic Oceanographic and Meteorological Laboratory for
this experiment.

Four types of special drifters were involved in the ex-
periment. Three of them were comprised of a main body,
made of Styrofoam, and a small, few-cm-long weighted
drogue at the bottom to ensure that a SPOT R© trace
Global Positioning System (GPS) tracker was maintained
above the sea level. This tracker transmitted positions
every 6 h. The main bodies of these special drifters rep-
resented a sphere of radius 12 cm, approximately, a cube
of about 25 cm side, and a cuboid of approximate di-
mensions 30 cm × 30 cm × 10 cm. These special drifters
were submerged below the sea level by roughly 10, 6.5,
and 5 cm, respectively. The fourth special drifter, made
of plastic, was designed to mimic a macroalgal mat, such
as a Sargassum mat. The GPS tracker was collocated in-
side a small Styrofoam cone embedded in the mat. The
maximal area spanned by the plastic mat was of about
250 cm × 50 cm and had a thickness of nearly 2 cm.
It floated on the surface with the majority of its body
slightly above the surface.

In this paper we focus on the analysis of the first week
of trajectory records. There are two reasons for restrict-
ing to this period of time. First, the cube stopped trans-
mitting position after one week. Thus extending the pe-
riod of analysis beyond one week will shrink the space of

Figure 1. (top) Satellite-tracked trajectories of the special
drifters with colors indicating time since deployment (left)
and zonal (i.e., west-to-east) wind intensity (right). (bottom)
Zonal velocity of the special drifters as a function of time from
deployment to the instant when zonal wind speed reached its
first peak.

Figure 2. (left) Trajectories of the special drifters (thin) and
trajectories resulting from integrating a surface ocean current
synthesis of altimetry-derived geostrophic flow, wind-induced
Ekman drift, and drogued drifter velocities (dashed). (right)
As in the left panel, but with dashed curves resulting from
integrating leeway velocities constructed by adding to the al-
timetry/wind/drifter velocity synthesis small fractions (from
top to bottom 1, 3, and 5%) of wind velocity.
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parameters for exploration. Second, the special drifters
tend to absorb water. This results in a change in their
initial buoyancy over time and thus in their response to
ocean current and wind drag. In the absence of empiri-
cal evidence, simulating this response will require one to
propose some model for the time variation of the buoy-
ancy, which we avoid to reduce uncertainties. With this
in mind, we note that the special drifters were affected
by a strong wind event that took place between 2 and 3
days after deployment (Fig. 1, top). This wind event un-
evenly impacted the trajectories, suggesting dominance
of inertial effects. Furthermore, even prior to the anoma-
lous wind event, the velocity of the special drifters was
not uniform across them (Fig. 1, bottom), suggesting an
uneven response of their motion to the ocean currents as
well. This reinforces the idea that inertial effects domi-
nated the motion of the special drifters.

Indeed, surface velocities alone cannot explain the dif-
ferent trajectories described by the special drifters, as is
shown in the left panel of Fig. 2. The dashed curve in this
figure is the trajectory that results from integrating a sur-
face velocity representation starting from the deployment
site and time. The thin curves are the various special
drifter trajectories. The surface velocity corresponds to
a synthesis of geostrophic flow derived from multisatellite
altimetry measurements31 and Ekman drift induced by
wind from reanalysis32, combined to minimize differences
with velocities of GDP drifters drogued at 15 m16.

Moreover, a leeway velocity model is not capable of
representing the variety of trajectories produced by the
special drifters with a single windage strength choice.
Several windage levels must be considered depending on
the special drifter. This is insinuated in the right panel
of Fig. 2, which shows (in dashed) trajectories resulting
from integrating leeway velocities constructed by adding
to the above surface velocity synthesis small fractions of
the reanalyzed wind field involved in the synthesis. The
windage levels are in the widely used ad-hoc range 1–
5%.7,29,30 Which level best suits a given special drifter
cannot be assessed a priori. The Maxey–Riley theory of
Beron-Vera, Olascoaga, and Miron 18 provides means for
resolving this uncertainty by explicitly accounting for the
effects of the inertia of the drifters on their motion.

III. THE MAXEY–RILEY FRAMEWORK

Consider a stack of two homogeneous fluid layers. The
fluid in the bottom layer represents the ocean water and
has density ρ. The top-layer fluid is much lighter, rep-
resenting the air; its density is ρa � ρ. Let µ and µa

stand for dynamic viscosities of water and air, respec-
tively. The water and air velocities vary in horizontal
position and time, and are denoted v(x, t) and va(x, t),
respectively, where x = (x1, x2) denotes Cartesian33 posi-
tion with x1 (resp., x2) pointing eastward (resp., north-
ward) and t is time. This configuration is susceptible
to (Kelvin–Helmholtz) instability34, which is ignored as-

suming that the air–sea interface remains horizontal at all
times. In other words, any wave-induced Stokes drift35

is accounted for implicitly, and admittedly only partially,
by absorbing its effects in the water velocity v (e.g., as-
suming that this is produced by a coupled ocean–wave–
atmosphere model). Consider finally a solid spherical
particle, of radius a and density ρp, floating at the air–
sea interface. Define18

δ :=
ρ

ρp
≥ 1. (1)

Under certain conditions, clarified in Section IV B, δ−1

approximates well the fraction of particle volume sub-
merged in the water17,18. For future reference consider
the following parameters depending on the inertial par-
ticle buoyancy δ:

Φ :=
i
√

3

2

(
1

ϕ
− ϕ

)
− 1

2ϕ
− ϕ

2
+ 1, (2)

where

ϕ :=
3

√
i
√

1− (2δ−1 − 1)2 + 2δ−1 − 1. (3)

Nominally ranging in the interval [0, 2), Φ allows one to
evaluate the height (resp., depth) of the emerged (resp.,
submerged) spherical cap as Φa (resp., (2 − Φ)a).18 Fi-
nally,

Ψ := π−1 cos−1(1−Φ)−π−1(1−Φ)
√

1− (1− Φ)2, (4)

which nominally ranges in [0, 1) and gives the emerged
(resp., submerged) particle’s projected (in the flow direc-
tion) area as πΨa2 (resp., π(1−Ψ)a2).18

A. The full set

The Maxey–Riley set19,36,37 includes several forcing
terms that describe the motion of solid spherical particles
immersed in the unsteady nonuniform flow of a homoge-
neous viscous fluid. These terms are the flow force ex-
erted on the particle by the undisturbed fluid; the added
mass force resulting from part of the fluid moving with
the particle; and the drag force caused by the fluid vis-
cosity.

Vertically integrating across the particle’s extent the
Maxey–Riley set, enriched by further including the lift
force38, which arises when the particle rotates as it
moves in a (horizontally) sheared flow39, and the Corio-
lis force17,26,27, which is the only perceptible effect of the
planet’s rotation in the x-frame (as it has the local ver-
tical sufficiently tilted toward the nearest pole to coun-
terbalance the centrifugal force40), Beron-Vera et al.18

obtained the following Maxey–Riley set for surface ocean
inertial particle motion:

v̇p+
(
f+

1

3
Rω
)
v⊥p +τ−1vp = R

Dv

Dt
+R
(
f+

1

3
ω
)
v⊥+τ−1u,

(5)
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where

u := (1− α)v + αva. (6)

In (5) vp is the velocity of the inertial particle and v̇p its
acceleration; f = f0 +βx2 is the Coriolis parameter; ω =
−∇ · v⊥ = ∂1v

2− ∂2v
1 is the (vertical component of the)

water’s vorticity; D
Dtv = ∂tv + (∇v)v = ∂tv + (∂1v)v1 +

(∂2v)v2 is the total derivative of the water velocity along
an ocean water particle trajectory; and parameters

R :=
1− 1

2Φ

1− 1
6Φ
∈ [0, 1), (7)

and

τ := K ·
1− 1

6Φ

3
(
k−1(1−Ψ) + γk−1

a Ψ
)
δ
· a

2

µ/ρ
> 0, (8)

which measures the inertial response time of the medium
to the particle. The nominal range of τ values is clarified
in Section IV B. In (8)

γ :=
µa

µ
> 0; (9)

parameter k > 0 (resp., ka > 0) determines the pro-
jected length scale of the submerged (resp., emerged) in-
ertial particle piece upon multiplication by the immersion
(resp., emersion) depth (resp., height); and 0 < K ≤ 1 is
a correction factor that accounts for the effects of parti-
cle’s shape deviating from spherical, satisfying41

K−1 =
1

3

an

av
+

2

3

as

av
. (10)

Here an, as, and av are the radii of the sphere with equiv-
alent projected area, surface area, and equivalent volume,
respectively, whose average provide an appropriate choice
for a. Finally, in (6)

α :=
γk−1

a Ψ

k−1(1−Ψ) + γk−1
a Ψ

. (11)

Since 0 ≤ α < 1, nominally, the convex combination (6)
represents a weighted average of water and air velocities.

B. Slow manifold approximation

Set (5) represents a nonautonomous four-dimensional
dynamical system in position (x) and velocity (vp). A
two-dimensional system in x, which does not require
specification of initial velocity for resolution, can be de-
rived by noting that (5) is valid for sufficiently small par-
ticles or, equivalently, the inertial response time τ is short
enough. More specifically, (5) involves both slow (posi-
tion) and fast (velocity) variables, which makes it a sin-
gular perturbation problem. This enables one to apply

x

vp
Mτ

M0

t

O(τ)
ẋ = u+ τuτ

ẋ = u

O(e−1/τ)

Figure 3. Geometry of the Maxey–Riley set (5) dynam-
ics in the extended phase space. Unique up to an error of
O(e−1/τ ) � O(τ), the locally invariant slow manifold Mτ

(14) normally attracts all solutions of the Maxey–Riley set
when τ > 0 is small exponentially fast. This lies O(τ)-close
to the critical manifold M0. For the fast dynamics, i.e., with
t rescaled by τ−1, M0 is filled with fixed points, while for the
slow dynamics, i.e., with t unscaled, motion on M0 is non-
trivial, evolving according to the buoyancy-weighted average
of water and air velocities u (6). Yet motion off M0 is not
controlled by the dynamics on it.

geometric singular perturbation analysis42,43 extended to
the nonautonomous case44 to obtain18:

ẋ = vp = u+ τuτ (12)

+O(τ2) as τ → 0, where

uτ := R
Dv

Dt
+R

(
f+

1

3
ω
)
v⊥−Du

Dt
−
(
f+

1

3
Rω
)
u⊥ (13)

with D
Dtu being the total derivative of u, defined in (6),

along a trajectory of u.
The reduced set (12) controls the evolution of the full

set (5) on the manifold

Mτ := {(x, vp, t) : vp = u(x, t) + τuτ (x, t)}, (14)

which is referred to as a slow manifold because (5) re-
stricted to Mτ , i.e., (12), represents a slowly varying
system (Fig. 3). Invariant up to trajectories leaving
it through its boundary, and unique up to an error of
O(e−1/τ ) � O(τ),42 Mτ normally attracts all solutions
of the τ → 0 limit of (5) exponentially fast. The only
caveat44 is that rapid changes in the carrying flow veloc-
ity, represented by u, can turn the exponentially dom-
inated convergence of solutions on Mτ not necessarily
monotonic over finite time.

IV. CLARIFICATION OF THE MAXEY–RILEY SET

A. Critical manifold

The τ = 0 limit of (5) with t rescaled by τ−1 to form a
fast timescale has a large set of fixed points, which, given
by vp = u, entirely fill M0, called the critical manifold.
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Motion on M0 is thus trivial for the τ = 0 limit of the
fast form of (5). The τ = 0 limit of the slow form of (5),
i.e., with t unscaled, blows this motion up to produce
nontrivial behavior on M0, yet leaving the motion unde-
termined off M0, which is controlled by Mτ when τ > 0
small.

The idea that motion on M0 is trivial43 must be under-
stood in the specific dynamical systems sense above and
should not be confused with implying that ẋ = u can-
not support rich dynamics. Clearly, rich dynamics can
even be supported by the carrying velocity in the origi-
nal Maxey–Riley model setting with a single fluid and a
finite-size particle either heavier or lighter than the fluid.
Yet in that case the interest lies in the potentially much
richer dynamics22 that inertial effects may produce. The
situation is different in the present case, wherein the car-
rying flow (u) depends on the buoyancy of the particle,
cf. (6), and thus has inertial effects built in. Indeed, u
is not given a priori as in the standard fluid mechanics
setting22. Rather, it follows from vertically integrating
the drag force18. In other words, inertial effects are felt
by the particle even when τ = 0. It turns out, as we will
show below, that ẋ =u describes the trajectories of the
special drifters over the period analyzed reasonably well.

It is important to realize that ẋ = u is quite different
than—and thus should not be confused with—a leeway
model, i.e., one of the form ẋ = v + εva where ε > 0
is small. The leeway factor ε is, as noted above, com-
monly chosen in an ad-hoc manner to reduce differences
with observations7,29,30. Yet buoyancy-dependent mod-
els for ε have been proposed in the literature45,46. But
at odds with the Maxey–Riley approach, these models
are obtained by neglecting inertia and assuming an exact
cancellation between water and air drag forces.

Clearly, one should not expect that the leading-order
contribution to the reduced Maxey–Riley set (12) be
sufficient to describe all aspects of inertial particle mo-
tion in the ocean. Examples of relevant aspects include
clustering at the center of the subtropical gyres17,18,
phenomenon supported on measurements of plastic de-
bris concentration6 and the analysis of undrogued drifter
trajectories17,18, or the role of mesoscale eddies as at-
tractors or repellers of inertial particles depending on
the polarity of the eddies and the buoyancy of the
particles18,26,27 despite the Lagrangian resilience of their
boundaries47–50, which is also backed on observations51.
The cited phenomena, which act on quite different
timescales, all require both O(1) and O(τ) terms in (12)
for their description17,18,26,27 consistent with the slow
manifold Mτ in (14), rather than the critical M0, con-
trolling the time-asymptotic dynamics of the τ → 0 limit
of the Maxey–Riley set (5).

B. Domain of validity

Unlike stated in Beron-Vera, Olascoaga, and Miron 18 ,
the domain of applicability of the Maxey–Riley set is not

extensible to all possible δ values, which nominally range
in a very large interval bounded by 1 from below. Indeed,
the fraction of submerged particle volume18

σ =
1− δa
δ − δa

, (15)

where

1 ≤ δ ≤ ρ

ρa
� 1,

ρa

ρ
≤ δa :=

ρa

ρp
≤ 1, (16)

as static stability (Archimedes’ principle) demands, so
0 ≤ σ ≤ 1. Note that ρ � ρa implies δ � δa and as
a result σ ≈ (1 − δa)/δ, which may be further approx-
imated by δ−1 if δa � 1. The latter does not follow
from ρ � ρa as incorrectly stated in Beron-Vera, Olas-
coaga, and Miron 18 . It is an assumption which holds
provided that δ is not too large. This follows from noting
that δa ≡ (ρa/ρ) · δ. Thus inferences made in Beron-
Vera, Olascoaga, and Miron 18 on behavior as δ →∞ are
not formally correct and should be ignored. In particu-
lar, Section IV.B of Beron-Vera, Olascoaga, and Miron 18

should be omitted, and the left and middle panels of Fig.
2 in that paper, which shows α as a function of δ over a
large range, should be interpreted with the above clari-
fication in mind. Also, the formal ranges of parameters
Φ, Ψ, and R are smaller than their nominal ones (stated
above).

Currently underway52 is a corrigendum and addendum
to Beron-Vera, Olascoaga, and Miron 18 where it is shown
that the correct way to formulate the Maxey–Riley set
so it is valid for all possible buoyancy values is by us-
ing, instead of δ, the exact fraction of submerged vol-
ume σ, as given in (15). In Beron-Vera, Olascoaga, and
Miron 52 it is shown, for instance, that the σ → 0 (equiv-
alently, δ → ∞) limit is symmetric with respect to the
σ → 1 (equivalently, δ → 1) limit, as it can be expected.
Also, additional terms, involving air quantities must be
included, both in the full and reduced sets if δ is allowed
to take values in its full nominal range. It is important
to note, however, that for the purposes of the present
work, which involves dealing with observed δ values not
exceeding 4 or so, these additional terms can be safely
neglected and thus is appropriate to use sets (5) or (12)
as presented above.

C. Parameter specification

In order for the Maxey–Riley parameters to be fully
determined by the carrying fluid system properties and
the inertial particle’s characteristics, the projected length
factors, k and ka, must first be specified. These should
depend on how much the sphere is exposed to the air
or immersed in the water to account for the effect of
the air–sea interface (boundary) on the determination
of the drag. With this in mind, we make the following
proposition:

k = ka = δ−r, r > 0. (17)
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Making k = ka guarantees the leeway factor α in (11)
to grow with δ. This assures the air component of
the carrying flow field to dominate over the water com-
ponent as the particle gets exposed to the air. This
is consistent with making k = ka to decay with δ as
this guarantees the inertial response time τ in (8) to
shorten as the particle gets exposed to the air. Indeed,
ignoring boundary effects, for a spherical particle that
is completely immersed in the water τ = a2ρ/3µ,18,25

while τ = a2ρa/3µa ≡ (ρa/ργ) · (a2ρ/3µ) if the par-
ticle is fully exposed to the air. Using mean density
values ρ = 1025 kg m−3 and ρa = 1.2 kg m−3, and
mean dynamic viscosity values µ = 0.001 kg m−1s−1 and
µa = 1.8 × 10−5 kg m−1s−1, the lower bound on τ is
approximately 0.05 · (a2ρ/3µ). Clearly, with k = ka de-
pending on δ as in (17), limδ→∞ τ = 0. But this limit,
as clarified above, is outside the domain of validity of
the Maxey–Riley set (5) or its reduced form (12). It
turns out that what really matters once the theory is
confronted with observations is that (17) makes τ to de-
cay at a faster rate with increasing δ than k = ka = 1,
which corresponds to setting the projected length of the
submerged (resp., emerged) particle piece to be equal to
the submerged depth (resp., emerged height). In fact,
below we show that r ≈ 3 best fits observations. In
Beron-Vera, Olascoaga, and Miron 52 we will report on
results aimed at providing a stronger foundation for (17)
based on direct numerical simulations of low-Reynolds-
number flow around an spherical cap of different heights.
To the best of our knowledge, a drag coefficient formula
for this specific setup is lacking. An important aspect
that these simulations, in progress at the time of writing,
will account for is the effect of the boundary on which the
spherical cap rests on, which may lead to changes to the
bounds on τ noted above.

V. USING THE MAXEY–RILEY FRAMEWORK TO
EXPLAIN THE BEHAVIOR OF THE SPECIAL DRIFTERS

Table I presents our estimates for the parameters that
characterize the special drifters as inertial particles evolv-
ing according to the Maxey–Riley set, in its full (5) or
reduced (12) version. These are classified into primary
parameters (a, K, and δ) and secondary parameters (α,
R, and τ), which derive from the primary parameters.

The radius a and shape correction factor K follow from
each special drifter’s dimension and shape specification.
In computing the buoyancy δ we relied on the estimate
of the immersion depth (h) for each special drifter at the
Rosenstiel School of Marine and Atmospheric Science’s
pier, in Virginia Key (recall (2) and that Φ(δ) = 2−h/a,
which specifies δ). This estimate does not account for
any change in density from the coast to the deployment
site. Also, the density changes along the special drifter
trajectories, which is ignored in the analysis. As one may
fairly suspect, our estimates for the mat’s parameters are
the most affected by uncertainty due to the configuration

special drifter parameter
primary secondary

a [cm] K δ α R τ [d−1]
sphere 12 1 2.7 0.027 0.51 0.002
cube 16 0.96 4 0.042 0.42 0.001

cuboid 13 0.95 2.5 0.024 0.53 0.003
mat 26 0.53 1.25 0.005 0.79 0.031

Table I. Parameters that characterize the special drifters as
inertial particles.

of this special drifter, which is not a solid object as the
other three.

The values of α and R are obtained from (11) and (7),
respectively, assuming (17) and viscosities set to typi-
cal values (µ = 0.001 kg m−1s−1 and µa = 1.8 × 10−5

kg m−1s−1). Determining τ from (8) requires one to
specify of the density of the water (for which we used
ρ = 1025 kg m3), and the exponent r in (17), which is
done as follows.

Let V and L be typical velocity and length scales, re-
spectively. With these one can form a nondimensional
inertial response time18

τ

L/V
=

K
(
1− 1

6Φ
)

3
(
k−1(1−Ψ) + γk−1

a Ψ
)
δ
· St, (18)

where

St :=
( a
L

)2

Re, Re :=
V L

µ/ρ
(19)

are Stokes and Reynolds numbers, respectively. An ap-
propriate velocity scale is such that v = O(V ) while
va = O(V/α). This makes sense provided that α is small,
which is satisfied for the special drifters. Taking V = 1
m s−1, typical at the axis of the Florida Current, and
L = 50 km, a rough measure of the width of the current,
one obtains that St is order unity at most for the spe-
cial drifters. Assuming that they are spherical so K = 1,
i.e., K equals upper bound, the nondimensional inertial
response time (18) is less than unity. This makes using
the Maxey–Riley set to investigate the special drifters’
motion defensible, and further suggests that such motion
can be expected to lie close to its slow manifold if r > 1
in (17).

We have estimated the inertial response time τ that
minimizes the square of the difference between observed
special drifter trajectories and trajectories described by
the Maxey–Riley set (5). The result of this optimization
is presented in Fig. 4, which shows the estimated τ values
(circles) as a function of special drifter buoyancy (δ). The
curve is the best fit to a particular τ model in a least-
squares sense to the optimized τ values. The τ model has
one fitting coefficient given by the exponent (r) in the
model proposed for the projected lengths (17), namely,

3µ

Ka2ρ
· τ(δ) =

1− 1
6Φ(δ)

1 + (γ − 1)Ψ(δ)
· δ−r−1. (20)
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Figure 4. Optimal inertial response time as a function of
special drifter buoyancy (circles) and least-squares fit of model
(20).

Minimization of the square of the residuals gives r = 2.94
with a small one-standard deviation uncertainty (0.03)
related exclusively to the goodness of the fit53. The op-
timal values of τ , which are not different than those re-
sulting using (20) with r = 3, are listed in Table I.

With all Maxey–Riley parameters now set, we can pro-
ceed to analyze the trajectories of the special drifters.
In Fig. 5 we depict special drifter (from left to right,
mat, cuboid, sphere, and cube) trajectories along with
trajectories (solid thin) resulting by integrating the
full Maxey–Riley set (5) (solid bold), trajectories pro-
duced by the reduced Maxey–Riley set (12) (dot-dashed,
nearly indistinguishable from bold solid), and trajec-
tories resulting by integrating the latter with τ = 0
(dashed). (All integrations in this paper are carried
out using a time-step-adapting fourth/fifth-order Runge–
Kutta (the Dormand–Prince54 pair) scheme as imple-
mented in MATLAB R© with interpolations (in space and
time) done using a cubic method.) The surface ocean ve-
locity synthesis discussed in the preceding section is used
to represent the water velocity (v) involved in each of the
corresponding dynamical systems, while the air velocity
(va) is specified using the reanalyzed wind data involved
in that synthesis. The initial velocities required to in-
tegrate the full Maxey–Riley set are taken to be equal
to the velocities of the various drifters as obtained from
differentiating their trajectories in time. Several obser-
vations are in order.

First and foremost is the overall improved agreement
between special drifter trajectories and Maxey–Riley tra-
jectories relative to those resulting from integrating v and
the leeway model v + εva with ε = 0.03 (cf. Fig. 2). In-
deed, the Maxey–Riley trajectories capture well both the
drift of the mat, predominantly along the Florida Cur-
rent, and the eastward turn unevenly experienced by the

Figure 5. Special drifter (from left to right, mat, cuboid,
sphere, and cube) trajectory (solid bold), and trajectories re-
sulting by integrating the full Maxey–Riley set (solid thin),
the reduced Maxey–Riley set (dot-dashed), and the latter
with τ = 0 (dashed). The water velocity is taken as the
surface ocean velocity synthesis in Fig. 2 and the air veloc-
ity as the reanalyzed wind involved in the synthesis. Initial
velocities to integrate the full Maxey–Riley set are taken as
the velocities of the special drifters. Parameters are given in
Table I.

cuboid, sphere, and cube. The leeway model trajecto-
ries cannot represent the latter with, as we note below,
a single leeway factor (ε) choice, and the trajectories of
v mainly represent the passive drift of ocean water along
the Florida Current.

A second observation that follows from the inspection
of Fig. 5 is that full Maxey–Riley trajectories coincide,
virtually, with reduced Maxey–Riley trajectories. This
indicates that convergence on the slow manifold is very
fast. Consistent with this is the tendency of the Maxey–
Riley trajectories to lie close, particularly the in the case
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of the sphere and the cube, to those produced by the
reduced Maxey–Riley set with τ = 0. This by no means
imply that the special drifters are not affected by inertia.
Quite to the contrary, as we have clarified, u depends on
buoyancy and thus has inertial effects incorporated. This
explains why a single choice of leeway factor ε was not
sufficient to explain the uneven effect of the ocean current
and wind on the drift of the special drifters (recall Fig.
2).

An additional observation, which cannot be omitted, is
that differences between observed and Maxey–Riley tra-
jectories, albeit minor compared with those of the surface
velocity synthesis and the leeway model(s), are visible
in Fig. 5. There are several sources of uncertainty that
contribute to produce differences between observed and
Maxey–Riley trajectories. For instance, there are pro-
cesses acting near the surface of the ocean that are not
represented by the surface ocean flow synthesis consid-
ered here. The dominant component in this synthesis
is the altimetry-derived velocity, which is too coarse to
represent submesoscale motions and does not represent
velocity shear between 15-m depth and the ocean surface.
On the other hand, the Maxey–Riley set, as formulated,
can only account for the potential contribution of wave-
induced (Stokes) drift implicitly, by absorbing the corre-
sponding wave-induced velocity in the water component
of the carrying flow. The flow synthesis does not account
for wave-induced motions as is constructed in such a way
to minimize differences with velocities of drogued (GDP)
drifters designed to keep wave-induced slip to very low
levels (wind-plus-wave induced slip is less 1 cm s−1 in 10
m s−1 wind55). In turn, coming from reanalysis, the near
surface wind field cannot be expected to be fully repre-
sented. There is also uncertainty around the determina-
tion of the buoyancy of the special drifters, which can
vary along a trajectory and this affect its determination
even further.

Assessing the effects of the of uncertainty around the
determination of the carrying flow field is not feasible.
Yet we can, at least roughly, estimate those produced by
that around the determination of the buoyancy of the
special drifters. The result is presented in Fig. 6, which
trajectories (in solid) overlaid on the area spanned by
Maxey–Riley trajectories (shaded bands) resulting from
allowing δ vary in an interval given by the value listed
in Table I ±10% (the dashed curve, included for refer-
ence, has δ in the center of this interval). The width
of this δ-interval accounts very roughly for the error in-
curred in estimating the submerged depth of the special
drifters in near-coastal water rather than at the deploy-
ment site in the Florida Current, and possibly too any
changes in δ produced by water absorption or ambient
water density variations along trajectories. Note that
the special drifters and corresponding Maxey–Riley tra-
jectories show consistency among over large portions to
within δ-induced uncertainty. In particular, most of the
sphere’s trajectory falls quite well inside the δ-induced
uncertainty band around the corresponding Maxey–Riley

trajectory. This encourages as to speculate that buoy-
ancy uncertainty dominates the discrepancies between
observed and simulated trajectories.

It is important to realize that differences between ob-
served and simulated trajectories may never be com-
pletely eliminated. The fundamental reason for this
stands on the unavoidable accumulation of errors and un-
certainties, in addition to sensitive dependence on initial
conditions, in any model, irrespective of how realistic56.
It is very remarkable then that despite this the Maxey–
Riley set has performed so well when individual trajec-
tories were compared.

A quantitative assessment of the Maxey–Riley set’s
skill is finally presented in Fig. 7, which shows, as a func-
tion of buoyancy (δ), Hausdorff distance57 between ob-
served trajectories, xo = {xo

i , i = 1, . . . , n}, and sim-
ulated trajectories xs = {xs(t), t ∈ [t1, tn]}, namely,
dH(xs, xo) := max{supxs(ti)∈xs infxo

i∈xo d(xs(ti), x
o
i ),

supxo
i∈xo infxs(ti)∈xs d(xs(ti), x

o
i )}, where d( , ) is Eu-

clidean distance. Roughly speaking, the Hausdorff dis-
tance is the greatest of all smallest distances between two
curves. Note that Maxey–Riley trajectories are overall
closer to the observed trajectories than those of the stan-
dard leeway model(s) or the buoyancy-dependent leeway
models discussed in this paper. In terms of the param-
eters of this paper, the leeway parameter for Rohrs et
al.’s leeway model45 εR(δ) =

√
ρa/ρ/

√
Ψ(δ)−1 − 1, while

that for Nesterov’s leeway model46 εN(δ) = 1/(εR(δ)−1 +
1), where ρa/ρ ≈ 10−3.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented results of one of a series
of experiments aimed at investigating the mechanism by
which objects floating on the ocean surface are controlled
by ocean currents and winds. The experiment consisted
in deploying simultaneously in the same location drift-
ing buoys of varied sizes, buoyancies, and shapes in the
Florida Current, off the southeastern Florida Peninsula.
The specially designed drifters described different trajec-
tories, which were affected by a strong wind event within
the first week of evolution since deployment. Consistent
with the uneven response to the wind and ocean current
action, the differences in the trajectories were explained
as produced by the special drifters’ inertia. This was
done by applying a recently proposed Maxey–Riley the-
ory for inertial (i.e., buoyancy, finite-size) particle motion
in the ocean18. Of buoyancy and finite size effects, the
former were found to make the largest contribution to the
inertial effects that controlled the special drifter motion.

The very good agreement between special drifter tra-
jectories and those produced by the Maxey–Riley may be
found surprising given the uncertainty around the deter-
mination of the carrying flow. Indeed, the ocean compo-
nent of the flow was provided by a synthesis dominated
by altimetry-derived velocity, while the atmospheric com-
ponent was produced by winds from reanalysis. Both
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Figure 6. Special drifter (from left to right, mat, cuboid, sphere, and cube) trajectory (solid), Maxey–Riley trajectory with
parameters as in Table I (dashed), and area spanned by Maxey–Riley trajectories resulting by allowing the buoyancy to range
in an interval given by the value listed in Table I ±10% (shaded bands).

Figure 7. As a function of buoyancy, Hausdorff distance be-
tween observed and simulated trajectories.

are admittedly limited. Furthermore, the Maxey–Riley
set does not account for several potentially important as-
pects such as space and time dependence of the particle’s
buoyancy or wave-induced drift.

We note that the Maxey–Riley set is found to be sim-
ilarly successful in explaining the behavior of special
drifters deployed in other sites of the North Atlantic as
part of the experiments that complete the series. The
drifters have similar characteristics as those deployed in
the Florida Current. An important difference is that
their trajectories lasted much longer than those discussed
here, resulting in a much more stringent test of the va-

lidity of the Maxey–Riley set. A detailed analysis58 is
underway and will be published elsewhere.

Finally, we took the opportunity of this paper to clarify
the Maxey–Riley theory derived in Beron-Vera, Olasco-
aga, and Miron 18 with respect to the nature of the car-
rying flow and its domain of validity, and to propose a
closure proposal for the determination of the parameters
involved in terms of the carrying fluid system proper-
ties and particle characteristics was proposed. A corri-
gendum and addendum52 to Beron-Vera, Olascoaga, and
Miron 18 is in progress. This will extend the theory to
arbitrary large object’s buoyancies and seek to better
justify the closure proposed here by means of direct nu-
merical simulations.
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Appendix A: Derivation of equation (5)

The exact motion of inertial particles obeys the
Navier–Stokes equation with moving boundaries as such
particles are extended objects in the fluid with their own
boundaries. This results in complicated partial differen-
tial equations which are hard to solve and analyze. Here,
as well as in Beron-Vera, Olascoaga, and Miron 18 , the in-
terest is in the approximation, formulated in terms of an
ordinary differential equation, provided by the Maxey–
Riley equation, which has become the de-jure fluid me-
chanics paradigm for inertial particle dynamics.

Such an equation is a classical mechanics Newton’s sec-
ond law with several forcing terms that describe the mo-
tion of solid spherical particles immersed in the unsteady
nonuniform flow of a homogeneous viscous fluid. Normal-
ized by particle mass, mp = 4

3πa
3ρp, the relevant forcing

terms for the horizontal motion of a sufficiently small
particle, excluding so-called Faxen corrections and the
Basset-Boussinesq history or memory term, are19,38,39:
1) the flow force exerted on the particle by the undis-
turbed fluid,

Fflow =
mf

mp

Dvf

Dt
, (A1)

where mf = 4
3πa

3ρf is the mass of the displaced fluid
(of density ρf), and Dvf

Dt is the material derivative of
the fluid velocity (vf) or its total derivative taken along
the trajectory of a fluid particle, x = Xf(t), i.e., Dvf

Dt =[
d
dtvf(x, t)

]
x=Xf (t)

= ∂tvf + (∇vf)vf ; 3) the added mass
force resulting from part of the fluid moving with the
particle,

Fmass =
1
2mf

mp

(
Dvf

Dt
− v̇p

)
, (A2)

where v̇p is the acceleration of an inertial particle with
trajectory x = Xp(t), i.e., v̇p = d

dt [vp(x, t)]x=Xp(t) =
∂tvp where vp = ∂tXp = ẋ is the inertial particle velocity;
2) the lift force, which arises when the particle rotates as
it moves in a (horizontally) sheared flow,

Flift =
1
2mf

mp
ωf(vf − vp)⊥, (A3)

where ωf = ∂1v
2
f − ∂2v

1
f is the (vertical) vorticity of the

fluid and

w⊥ = Jw, J :=

(
0 −1
1 0

)
(A4)

for any vector w in R2; and 4) the drag force caused by
the fluid viscosity,

Fdrag =
12µf

Af

`f

mp
(vf − vp), (A5)

where µf is the dynamic viscosity of the fluid, and Af

(= πa2) is the projected area of the particle and `f (= 2a)

is the characteristic projected length, which we have in-
tentionally left unspecified for future appropriate evalu-
ation.

To derive equation (5), Beron-Vera, Olascoaga, and
Miron 18 first accounted for the geophysical nature of the
fluid by including the Coriolis force. (In an earlier geo-
physical adaptation of the Maxey–Riley equation21, the
centrifugal force was included as well, but this is actually
balanced out by the gravitational force on the horizontal
plane.) This amounts to replacing (A1) and (A2) with

Fflow =
mf

mp

(
Dvf

Dt
+ fv⊥f

)
(A6)

and

Fmass =
1
2mf

mp

(
Dvf

Dt
+ fv⊥f − v̇p − fv⊥p

)
, (A7)

respectively.
Then, noting that fluid variables and parameters take

different values when pertaining to seawater or air, e.g.,

vf(x, z, t) =

{
va(x, t) if z ∈ (0, ha],

v(x, t) if z ∈ [−h, 0),
(A8)

Beron-Vera, Olascoaga, and Miron 18 wrote

v̇p + fv⊥p = 〈Fflow〉+ 〈Fmass〉+ 〈Flift〉+ 〈Fdrag〉, (A9)

where 〈 〉 is an average over z ∈ [−h, ha]. After some al-
gebraic manipulation, equation (5) follows upon making
` = kh and `a = kaha, and assuming δa � 1 with the
comments in Section IV in mind.
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