

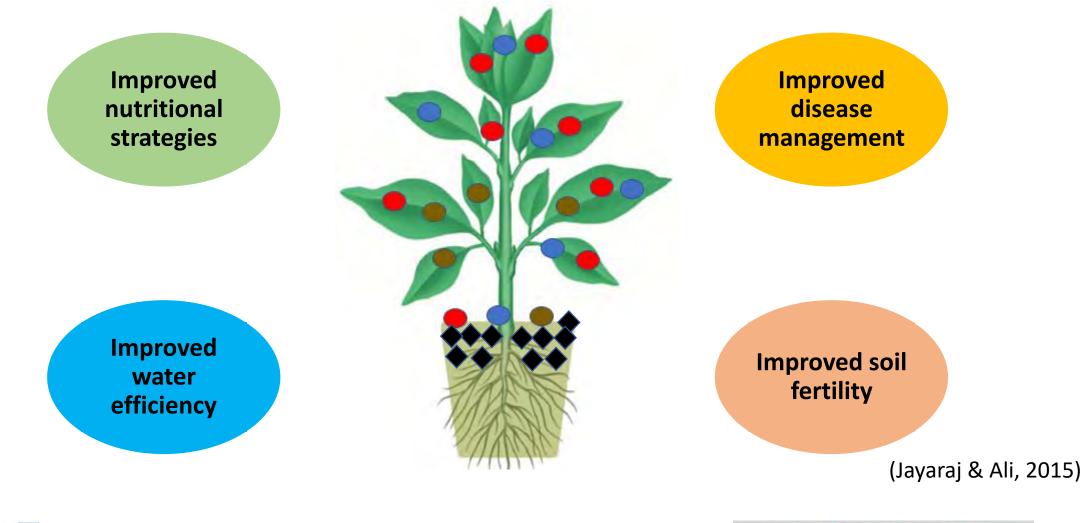
Valorization of Sargassum biomass for the production of bio-inputs for Agriculture

Jayaraj Jayaraman (Jaya)

Professor of Biotechnology and Plant Microbiology PI: Plant-Microbe-Biotech Research Group, Dept. of Life Sciences Faculty of Science & Tech. The University of the West Indies, St. Augustine, Trinidad jayauwi@gmail.com

Introduction and Rationale

- The flow of Sargassum is becoming a serious environmental problem all over the Caribbean islands.
- In Guadeloupe alone, around 80000 tons of seaweed are stranded during the season.
- A similar situation is seen around the entire Caribbean region.
- Recovery processes are highly sought because 90% of the collected algae are currently stored without proper use or recovery.



- The lack of research initiatives necessitates a more in-depth study targeted at innovative applications and their development.
- Sargassum biomass valorization must meet diverse needs including environmental, health and economic purposes.
- The purposes include use for, agricultural, construction, engineering, chemical, biological, environmental, feed and health product development.

Documented effects of Seaweed products usage

And the same lines and the strength of the same lines been

R OAFD

OECS

Documented effects of Seaweed products on plants

Effects:

- Improved root and shoot growth
- Higher flowering and fruit set
- Increased yield
- Increased tolerance to biotic and abiotic stresses

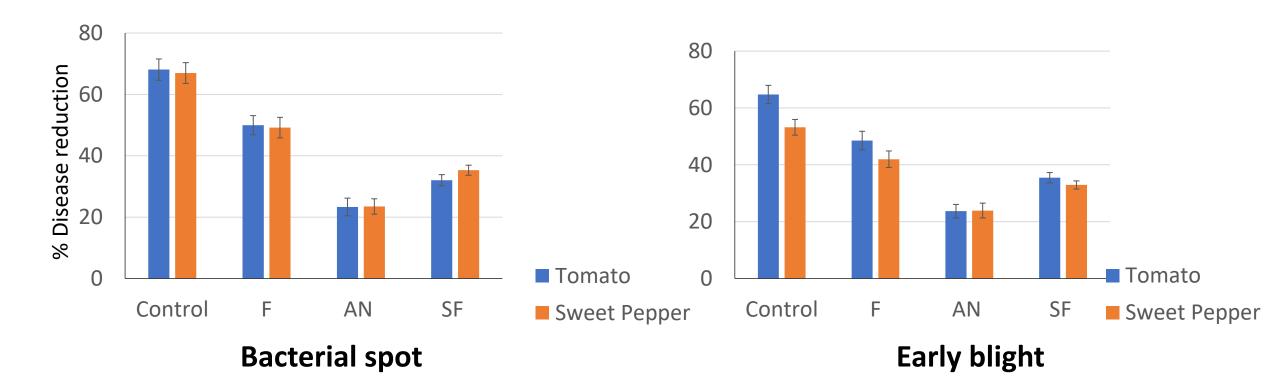
Mechanisms:

- Modulation of phytohormones
- Increased photosynthetic efficiency
- Delayed senescence
- Upregulation of genes of various metabolic pathways
- Enhanced microbiome dynamics and activities
- Improved soil qualities

SWE improved plant growth

Tomato

Sweet Pepper


Treatments	Plant height (cm)	Leaf Number	Leaflet weight (g)	Stem weight (g)	Root weight (g)	Treatments	Plant height (cm)	Leaf Number	Leaflet weight (g)	Stem weight (g)	Root weight (g)
SF	<mark>128.44 b</mark>	<mark>59.80 c</mark>	<mark>6.65 c</mark>	<mark>15.83 c</mark>	<mark>5.32 c</mark>	SF	<mark>77.72 c</mark>	<mark>25.00 c</mark>	<mark>3.08 c</mark>	<mark>7.58 b</mark>	<mark>3.57 b</mark>
AN	<mark>151.68 c</mark>	<mark>71.64 d</mark>	<mark>8.18 d</mark>	<mark>18.44 d</mark>	<mark>7.57 d</mark>	AN	<mark>90.54 d</mark>	<mark>30.62 d</mark>	<mark>4.91 d</mark>	<mark>10.44 c</mark>	<mark>5.01 c</mark>
Fungicide	113.08 a	51.62 b	4.56 b	13.51 b	2.72 b	Fungicide	63.70 b	19.52 b	2.72 b	6.71 a	1.94 a
Control	102.56 a	34.80 a	3.76 a	10.62 a	1.81a	Control	52.48 a	14.88 a	1.87 a	6.30 a	1.39 a

(Ali et al. 2022)

Greenhouse Disease Severity trials

(Ali et al. 2022)

Effect of SWE on hydroponic- grown lettuce

Overview of the positive effects of seaweed extracts on the plant and soil systems

Improved plant phenotype

Starter effect for seedlings
improved root growth and density
Increased chlorophyll content, photosynthetic rates & stomatal conductance
Increased leaf numbers, plant height and vigour
Higher flower numbers per plant

Greater fruit set numbers per plant
 Prolonged flowering and bearing

Tolerance effects

- Priming effects/tolerance for biotic stresses
 -insect pests, nematodes
- -microbial pathogens (fungal, bacterial and viral)
- Priming effects/tolerance for abiotic stresses (salinity, drought, freezing)
 Improved resilience to transplantation shock

Microbial restructuring

Soil crumb structure & aeration improvements
Increased α & β diversity in soil and root microbes
increased population of beneficial microbes
Increased enzymatic activity (hydrogenase, invertase, urease, proteinase, polyphenol oxidase & phosphatase)

Modulated pathways

Increased expression of phytohormone genes (GA,IAA & CK)
Modulation of defense signalling pathways (SA,JA & ET)
Modulation of ABA mediated signalling
Increased expression of flowering-related genes
Increased expression of root transporter genes

Produce Quality

- Increased fruit weight and flesh thickness & firmness vibrant colour and higher mineral content
- Increased Vitamin C, TSS, total phenols, anthocyanins, total protein, fructose & sucrose
- Enhanced shelf life, minimized fruit browning and post-harvest infestation

Nutrient Acquisition

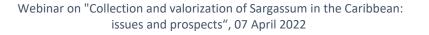
- Root structure alteration
- Efficient use of soil water
- Increase micro/macro mineral content in roots and aerial plant tissues
- Rooting promotion in cuttings
- Increased nutrient use efficiency
- Increased uptake of macro and micro nutrients

(Ali et al. 2022)

Activity 1: Extraction of the biomass and development of formulations

Activity 2: Evaluation of biological and stimulatory effects

Activity 3. Impact on the plant, soil, microbes, fauna, ecotoxicology and nutritional quality of the produce



WP5: Use of Sargassum for developing innovative materials

WP5.5: Composting methods for the effective biotransformation of Sargassum residual biomass into value- added agricultural products for soil application Activity 1. Development of composting methods Activity 2. Study of microbial mechanisms Activity 3. Evaluation of bioactivity, biological effects on the plant growth and quality Activity 4. Study of environmental effects Activity 5. Technology dissemination and outreach

Project Partners

- The Université des Antilles (UA) Guadeloupe (Lead)
- The University of the West-Indies (UWI)- Trinidad & Tobago.
- The Universidade de Sao-Paulo (USP) Brasil.
- The Institut Polytechnique de Toulouse (INPT) France.
- 100% ZEB, Smart Island Guadeloupe.

The UWI Team

Name	Expertise	Role/function
Prof. Jayaraj JAYARAMAN	Biotechnology, Microbiology, Bioproducts	PI
	Environmental Microbiology, Bioproducts,	
Prof. Adesh RAMSUBHAG	Antimicrobials	CoPI
Prof. Indar RAMNARINE	Fisheries biology, Marine biodiversity	CoPI
Dr. Nigel JALSA	Biological Chemistry, Natural products	Member
Mr. Omar ALI	Plant-Microbiology, Seaweed-Formulations	Member
Dr. Antonio RAMKISSOON	Antimicrobials, Natural products chemistry	Collaborator
Dr. Chinnaraja CHINNADURAI	Bioinformatics, Biostatistics	Collaborator
Dr. Aidan FARRELL	Plant Physiology, stress physiology	Member
Dr. Azad MOHAMMED	Ecology and toxicology	Member
Prof. Boppana CHOWDARY	Mechanical engineering	Collaborator
Dr. Jeffrey SMITH	Chemical engineering	Collaborator
Dr. Bidyut MOHAPATRA, UWI-Cave Hill	Microbiology	Collaborator
Research associates	Biology, Chemistry and Biotechnology	Researchers
Dr. Chaney St. MARTIN, IICA	Compost technology, Horticulture	Member
Prof. Gomathinayagam SUBRAMANIAN, UG	Biological control, Biofertilizers	Collaborator

THANKS

THE TRINIDAD & TOBAGO RESEARCH AND DEVELOPMENT IMPACT FUND

THE CONSERVATION, FOOD & HEALTH FOUNDATION

Acadian Seaplants

