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Highlights

• Sargassum fluitans III growth rate is the highest.

• Sargassum natans I growth rate is the lowest.

• Tissue composition differs between morphotypes.

Abstract

Holopelagic Sargassum blooms in the tropical North Atlantic since 2011 are composed of two 

species, Sargassum natans and S. fluitans, and three morphotypes: S. natans VIII, S. natans I and 

S. fluitans III. The distinct morphology and the variations in space and time of the proportion of these 

three morphotypes suggest that they may have different physiology. For the first time, we have 

quantified the  growth rates of these three morphotypes through in situ 9-day experiments on the 

coast of Martinique Island (French West Indies). Despite the non-optimal conditions for growth for 

these pelagic species, we have observed that Sargassum fluitans III was growing faster 

(approximately twice as fast) than S. natans VIII and S. natans I. S. natans I exhibited the slowest 

growth. The differences in tissue composition (CNP and CN natural isotopes) of morphotypes point to 

a greater benefit for S. fluitans III from the coastal localization of our experiment than for the two S. 

natans morphotypes, and suggest that S. natans I had achieved its last growth further offshore 

before our experiment. These contrasting growth performances are consistent with the dominance 

of S. fluitans III in recent observations in the Caribbean. This also makes this last morphotype the 

best candidate for cultivation. Making the distinction between the growth performances of 

morphotypes may improve the current predictive models.
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1 1. Introduction

2 Since 2011, the tropical North Atlantic Ocean has been the site of seasonal blooms of holopelagic 

3 Sargassum, rooted in the North Equatorial Recirculation Region. Holopelagic Sargassum are currently 

4 forming the Great Atlantic Sargassum Belt that can be observed from space (Wang et al., 2019), and 

5 causes strandings westwards, along the whole of the North Atlantic coast of South America and the 

6 Caribbean area, including the Gulf of Mexico, and eastwards along the West African coasts (Berline et 

7 al., 2020).

8 These strandings are composed of three distinct morphotypes: Sargassum natans VIII Parr, S. 

9 natans I Parr, and S. fluitans III Parr (Schell et al., 2015). Each morphotype shows a distinct 

10 morphology especially blade size, number of blades and air bladders (floats) per stem, and presence 

11 of thorns on the stem (García-Sánchez et al., 2020; Schell et al., 2015) suggesting that the three 

12 morphotypes may have different biological characteristics.

13 Since the beginning of Sargassum blooms in 2011, significant variations of the abundance in 

14 morphotype composition have been observed. Initially, S. natans VIII was dominant in the south 

15 (Antilles Current, Eastern Caribbean and Western Tropical Atlantic) and S. natans I in the north (south 

16 of the Sargasso Sea) (Schell et al. (2015) November 2014 to May 2015). In 2017, during two open 

17 ocean campaigns along a latitudinal gradient from Guyana to the Sargasso Sea 

18 (https://doi.org/10.17600/17004300) and following a longitudinal transatlantic route 

19 (https://doi.org/10.17600/17016900) from Cabo Verde Island to Guadeloupe, S. fluitans III appeared 

20 to be dominant north of Guadeloupe for the first cruise and everywhere for the second cruise. More 

21 recently, studies have shown a quasi-permanent dominance of S. fluitans III in Sargassum strandings 

22 on Mexican Caribbean shores from 2016 to 2020 (Vázquez-Delfín et al., 2021; García-Sánchez et al., 

23 2020), along the Jamaican coast (Machado et al., 2022), and on the Caribbean, Floridan and Bahaman 

24 coasts (Iporac et al., 2022) as well as in the course of a 2022 transatlantic cruise 

25 (https://energieaugrandlarg.wixsite.com/website). 
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26 Predictive models of Sargassum dynamics in the Atlantic (Brooks et al., 2018; Jouanno et al., 2021) 

27 use parameters based on physiological studies that do not differentiate between morphotypes 

28 (Hanisak and Samuel, 1987; Lapointe, 1995; Lapointe et al., 2014). However in macroalgae, the life 

29 traits are often taxon-dependent (Vranken et al., 2022) and therefore could explain the variations in 

30 dominance between morphotypes with time and across the North Atlantic. Taking into account 

31 differential growth rate may improve the model’s simulations.

32 Differential physiology would also impact tissue composition of Sargassum in CNP including C:N, N:P, 

33 C:P ratios and δ13C, δ15N isotopes, as it integrates Sargassum environmental history along its drift 

34 path (Lapointe et al. 2021, Vázquez-Delfín et al., 2021).

35 The aim of this work was to quantify the growth rates and tissue CNP composition of the three 

36 morphotypes through in situ short term experiments in Martinique Island (French West Indies).

37 1 Materials and methods

38 1.1 Location of experimental site and Sargassum sampling

39 Experiments were performed on the east coast of Martinique Island, in Baie du Robert, close to the 

40 Ifremer marine station, where a meteorological station is located. It took place in May-June 2021, 

41 when the Island is frequently supplied with Sargassum (Johns et al., 2020). This shallow bay (<30 m 

42 depth) faces the Atlantic Ocean and receives Sargassum pushed by the northeast trade winds after 

43 passing over the continental shelf, which extends for more than 15 km offshore (Fig. S1).

44 The nutrient concentrations (NO3
-
, NO2

-, NH4
+, PO4

2-) of surface seawater in the bay was monitored 

45 once every 2 months since 2017 as part of an extension of Ifremer's REPHY network (Belin et al., 

46 2021) to the French overseas territories. The values (mean ± SD) measured at the REPHY station, 

47 situated 400 m from our experimental site (S1), were low for a coastal station, especially when 

48 considering the different forms of N, NO3
-+NO2

- (0.3±0.3 µmole L-1) and NH4
+ (0.3±0.3 µmole L-1), with 
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49 regard to PO4
2- (0.07±0.05 µmole L-1). This absence of pollution is confirmed by a previous detailed 

50 study of the bay (De Rock et al., 2019).

51 1.2 Growth experiment

52 Sargassum individuals were collected off the coast within the bay selecting the young clumps 

53 following the criteria of Stoner and Greening (1984) to age the clumps. For each morphotype, we cut 

54 fragments of 5 to 20 cm length from the apical part, free from visible epiphytes. To be consistent 

55 with field observations, the three morphotypes were grown together. Approximately 20 g of wet 

56 weight of each morphotype (5-10 fragments, 60 g in total) hereinafter called a batch, were placed in 

57 5 L transparent plastic bottles, perforated with one hundred holes to allow good water circulation. 

58 These bottles were attached to mooring cables at 2 m depth to avoid destruction of the devices by 

59 wave effect. Temperature and light inside two of the four bottles was recorded with UA-002-08 

60 (HOBO) data loggers.

61 The entire experiment lasted 9 days, from May 25th to June 3rd 2021. The wet weight was measured 

62 every 3 days. The wet weight of each batch was measured on a BAXTRAN BR balance (0.1 g 

63 readability) after dewatering using absorbent paper in a salad spinner. Inside each batch, three 

64 individuals per morphotype (n = 36) were identified with colored beads strung on a nylon thread 

65 attached to the fragment. The wet weight of each individual (n = 12 per morphotype) was obtained 

66 as for the batch but by using a more accurate balance (PRECISA 321LT, 0.1 mg readability). In 

67 addition, for each individual the number of floats was counted.

68 1.3 Water, tissue, and data analysis

69 At the beginning of the experiment, and before each measurement session, we sampled the water in 

70 200 mL plastic bottles to measure nutrient composition. The sample was fixed with 100µL HgCl2 per 

71 bottle, and then stored in a cool place protected from light. The analyses were carried out by 

72 automated colorimetry for NO3
-
, NO2

-, NH4
+, PO4

2- (Aminot and Kérouel, 2007) and for NH4
+ (Holmes 

73 et al., 1999).
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74 At the end of the experiment, eight samples of 5 g wet weight of each morphotype were analyzed for 

75 C, N, P, δ13C and δ15N tissue composition. These samples were dried in an oven at 60°C during 48 h, 

76 reduced into powder, acidified to eliminate mineral sources of carbon, and analyzed by spectrometry 

77 following Raimbault et al. (2008).

78 The growth rate (GR) in weight was calculated in d-1 following:

79 �� =
1

 
!"(

$ 

$0
)

80 were d = number of days (d = 9 for the entire experiment) and Wd = wet weight at day d, W0 = wet 

81 weight at day 0.

82 The floats ratio (FR) was calculated (in %) with reference to the initial number of floats for the entire 

83 experiment following:

84 %�=
&9

&0
.100

85 were N9 = number of floats at day 9 and N0 = number of floats at day 0.

86 Non parametric Kruskal-Wallis test (KW test) followed by Dunns post-hoc test were used to test the 

87 morphotype effect on Sargassum GR, FR and tissue composition with a significance level of 0.05.

88 2 Results

89 2.1 Field conditions

90 During the 9 days of the experiment, water temperature inside the bottles varied from 28°C at night 

91 to 31°C during the day (06:00-18:00) when light inside the bottle varied from 74 to 

92 740 µmol photons m-2 s-1 with a mean value of 137 µmol photons m-2 s-1. The nutrient concentrations 

93 were high and variable compared to REPHY measurements (respectively 1.7 ± 2.0 vs 0.3 ± 0.3 µmole 

94 L-1 for NO3
-+NO2

-, 2.1 ± 1.7 vs 0.3 ± 0.3 µmole L-1 for NH4
+ and 0.3 ± 0.3 vs 0.07 ± 0.05 µmole L-1 for 

95 PO4
2-).
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96 The daily rainfall, including one day before the start of the experiment, varied from 0 to 10.6 mm, 

97 with a mean of 1.52 mm which is below the average of 2.07 mm from May to June 2021 at the 

98 station. The wind speed and direction were regular for the season (9.73 m.s-1 oriented WNW 

99 (67.27°)).

100 2.2 Patterns of change in the Sargassum weight and floats ratio

101 The increase in Sargassum weight in the course of the experiment was clearly visible when 

102 considering the batches (Fig. S2). After 9 days, the initial 20 g were exceeded by all morphotypes, 

103 reaching about 25 g for S. natans VIII and S. natans I and approaching 30 g for S. fluitans III. After 6 

104 days, the weight increase slowed down for all morphotypes. In contrast, this increase was lower and 

105 more variable in the individual measurements (Fig. S2). The floats ratio (FR) after 9 days was overall 

106 below 100%, showing a loss of floats for all morphotypes (Fig. S3). This was especially the case for S. 

107 natans I.

108 2.3 Growth rate

109 For all morphotypes, the GR over every 3-day period decreased overall over time from the beginning 

110 of the experiment (Fig. 1 A). The median value of batch GR varied from 0.063 to 0.022 d-1 after 3 

111 days, from 0.044 to 0.018 d-1 after 6 days, and from 0.019 to -0.006 d-1 after 9 days. 

112 Sargassum fluitans III had always the highest GR values and S. natans I the lowest. Sargassum natans 

113 VIII GR was intermediate. After 9 days, the individual GR showed a significant variation between 

114 morphotypes (KW test χ2= 16.244, df = 2, p-value = 0.0002969). The Dunns post hoc gives two 

115 significant results: S. fluitans III vs S. natans I (p=0.0000678***) and S. fluitans III vs S. natans VIII 

116 (p=0.0313*). Even if the mean individual GR of S. natans I was negative, linked with the first signs of 

117 senescence, the mean batch GR of this morphotype was positive (Fig. 1 B).

118 2.4 Tissue elemental composition (C, N, P, δ13C, δ15N) of Sargassum

119 The effect of morphotype was significant only for %N, δ15N, δ13C and C:N (Table S1). For other 

120 elements, the median values were %C = 23.52%, %P = 0.07%, N:P = 30.33 and C:P = 827.43.
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121 The post hoc Dunn tests (Fig. 2; Table S1) showed that S. fluitans III was characterized by a high %N, 

122 δ15N and low C:N and δ13C. In contrast, S. natans VIII showed low %N, δ15N and high C:N and δ13C and 

123 S. natans I was essentially characterized by a low δ15N.

124 3 Discussion

125 3.1 Changes in growth performance during the experiment

126 For the three morphotypes, GR (0.02-0.04 d-1 for batches) were in the low range of literature growth 

127 data reported by Brooks et al. (2018), i.e. [0.029-0.11] d-1 relying on in situ (Lapointe 1986, Lapointe 

128 et al. 2014) and laboratory experiments (Hanisak and Samuel, 1987). In addition, GR decreased with 

129 time for all morphotypes. This does not align with the neritic origin of our samples, generally 

130 associated with low nutrient limitation and high GR following Lapointe (1995). These results, for both 

131 batches and individuals, indicate that algae were not in optimal growth conditions. This decrease of 

132 GR may be due: 

133 - to excessively high seawater temperatures [28-31°C] observed during the experiment, as 

134 decrease in growth after 24°C was observed by Hanisak and Samuel (1987) for S. natans;

135 - to light limitation since our mean light measurement of 137 µmol photons m-2 s-1 in the bottle 

136 corresponds to intermediate GR of 0.02 d-1 (Hanisak and Samuel, 1987);

137 - to stress related to the confinement in the bottles despite the numerous holes made in order 

138 to renew the water. Pelagic Sargassum are known to produce large quantities of dissolved 

139 organic carbon (Powers et al., 2019) that promote, together with high nutrient level, 

140 bacterial growth (Michotey et al., 2020).

141 GR did not correspond to maximum growth values, taking into account both the phenomenon of 

142 growth and senescence over 9 days. Although culture conditions may be limiting, our results clearly 

143 show contrasting performances among morphotypes.

144 3.2 Differential growth between the 3 morphotypes and implications
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144144 3.2 Differential growth between the 3 morphotypes and implications



145 Sargassum fluitans III was growing faster, approximately twice as fast as S. natans VIII and S. natans I. 

146 This is consistent with lab experiment results of Hanisak and Samuel (1987). Moreover, S. natans I 

147 exhibited the slowest growth rate. This suggests that morphotypes matter. When exposed to high 

148 temperature, high nutrient concentration and a slight light limitation S. fluitans III does better than 

149 S. natans I.

150 These differences may have implications with regard to the relative abundance of morphotypes 

151 observed at sea and in strandings. However GR cannot be simply translated into abundances. The 

152 coexistence of the three morphotypes suggests that processes other than growth maintain 

153 competitive success of the S. natans morphotypes despite lower GR. Morphotypes may have 

154 differing environmental niches that were not spanned by our experimental conditions. For instance, 

155 in a more oligotrophic and colder environment than ours, S. natans I dominated during 2014 and 

156 2015 north of 24° N (Schell et al., 2015).

157 Future measurements of growth in contrasted conditions may help to explain field observations of 

158 morphotype composition and the dominance of S. fluitans III in the Caribbean.

159 3.3 Significance of CNP and isotope composition  

160 Our results showed significant differences of %N, δ15N, δ13C and C:N between morphotypes while no 

161 difference has been found between S. natans and S. fluitans in the large (n = 488) and long-term 

162 dataset of Lapointe et al. (2021). This discrepancy can be explained by the particular environmental 

163 history of our samples.

164 Overall, %N and %P% cannot explain the different GR among morphotypes. Both S. fluitans III and S. 

165 natans I have similar %N and %P values, but different GR. It may be related to nutrient uptake that 

166 occurred before the experiment.

167 The high N:P (30.33) and C:P value (827) of all morphotypes in our experiment suggests a limitation 

168 in P, as pointed out by Lapointe et al. (2021) for samples collected after 2010s. This P limitation may 

169 explain why %N differences do not result in growth rate variations.
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170 The value of %C (23.5%) was low compared to the recent Mexican samples of Vázquez-Delfín et al. 

171 (2021). Conversely, %N values were high in agreement with the Lapointe et al. (2021) data for the 

172 2010s, except for S. natans VIII which were lower in our study. The high C:N values (36) of S. natans 

173 VIII suggest that this morphotype was not in good growing conditions.

174 The isotopic composition showed high values in δ13C which are footprints of the continental origin of 

175 C as a consequence of the coastal situation of our samples. The low values of δ15N of S. natans I may 

176 be indicative of diazotrophic fixation, common in pelagic Sargassum (Carpenter, 1972; Phlips and 

177 Zeman, 1990) while higher values may indicate enrichment by NO3
- present along the coast (Lapointe 

178 et al. 2021). It is interesting to note that δ15N order among morphotypes follow the GR. This suggests 

179 that higher δ15N indicate more recent growth fueled by coastal NO3
-. That implies that the last 

180 growth of S. natans I was achieved at a greater distance in time and offshore.

181 Thus, the significant variations of the elemental composition point to a greater benefit for S. fluitans 

182 III from the coastal situation of our experiment than for the two S. natans morphotypes.

183 In conclusion, despite the non optimal conditions encountered in this experiment, it shows for the 

184 first time contrasting growth performances between morphotypes that are consistent with their 

185 abundance in the field. Current predictive models, which do not distinguish between morphotypes, 

186 can be improved by taking these growth differences into account. These differences in growth are 

187 probably linked to photosynthetic processes between morphotypes that will have to be specified 

188 with new experiments. Sargassum fluitans III appears here as the best candidate for cultivation, 

189 including indoors where access to light is more difficult.
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299

300 Fig. 1: Holopelagic Sargassum growth rate (d-1) for each morphotype measured on batches (n=4) and 

301 individuals (n=12 per morphotype) every 3 days (A.) and over the 9 days of the experiment (B.). Box 

302 shows the sample median and the first and third quartiles. Whiskers extend to the last data point 
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301 individuals (n=12 per morphotype) every 3 days (A.) and over the 9 days of the experiment (B.). Box 301 individuals (n=12 per morphotype) every 3 days (A.) and over the 9 days of the experiment (B.). Box 

302 shows the sample median and the first and third quartiles. Whiskers extend to the last data point 302 shows the sample median and the first and third quartiles. Whiskers extend to the last data point 



303 which is no more than 1.5 times the interquartile range. Outliers are shown as dots. The letter 

304 identifies the significant differences (p-value<0.05).
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306

307 Fig. 2: Tissue composition (%N, C:N, δ15N, δ13C) between Sargassum morphotypes. Box, whiskers and 

308 letters are shown as in Fig. 1.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4330794

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed

307 Fig. 2: Tissue composition (%N, C:N, 307 Fig. 2: Tissue composition (%N, C:N, 

308 letters are shown as in Fig. 1.308 letters are shown as in Fig. 1.



Supplementary material of Growth and tissue composition (CNP, 

isotopes) of the three morphotypes of pelagic sargassum

Fig. S1: Location of Ifremer station (I), experimental site (E) and REPHY monitoring station (R) with 

bathymetry. (a.) Regional position of Martinique Island, framed in red, with the main oceanic 

currents. (b.) Martinique Island with the orientation of the trade winds and location of Baie du 

Robert framed in red.
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bathymetry. (a.) Regional position of Martinique Island, framed in red, with the main oceanic bathymetry. (a.) Regional position of Martinique Island, framed in red, with the main oceanic 

currents. (b.) Martinique Island with the orientation of the trade winds and location of Baie du currents. (b.) Martinique Island with the orientation of the trade winds and location of Baie du 



Fig. S2: Sargassum wet weight patterns of change over time for measurements of  batches (n = 4) 

and individuals considering the different morphotypes (S. natans VII (n = 12), S. natans I (n = 12), and 

S. fluitans III (n = 12). Each line is a batch or an individual. It can be interrupted when a mark was lost 

or an apex dead or an individual broken in two parts.
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Fig. S2: Fig. S2: Sargassum

and individuals considering the different morphotypes (and individuals considering the different morphotypes (

S. fluitans 

or an apex dead or an individual broken in two parts.or an apex dead or an individual broken in two parts.



Fig. S3: Floats ratio after 9 days for the 3 morphotypes. Box shows the sample median and the first 

and third quartiles. Whiskers extend to the last data point which is no more than 1.5 times the 

interquartile range. Outliers are shown as dots. The KW test χ2= 10.76, df = 2, p-value = 0.004608. 

The only significant Dunns post hoc test is between S. natans VIII vs S. natans I (p=0.00104**). Note 

that some individuals S. fluitans III and S. natans VII show values over 100% since they have more 

floats at the end of the experiment than at the beginning.

Table S1: Synthesis of Kruskal-Wallis and Dunns post hoc test results for the morphotype effect on 

Sargassum composition in %C, %N, %P, C:N, N:P, C:P, δ15N, δ13C.

%C %N %P C:N N:P C:P δ13C δ15N

Kruskal Wallis Chi2 3,62 6,635 5,235 10,955 1,28 0,335 11,115 11,185

df 2 2 2 2 2 2 2 2

p-value 0,164 0,036 0,073 0,004 0,527 0,846 0,004 0,004

Dunns p-value S. natans VIII vs S. natans I 0,022 0,005 0,671 0,179

Dunns p-value S. natans VIII vs S. fluitans III 0,031 0,003 0,002 0,048

Dunns p-value  S. natans I vs S. fluitans III 0,888 0,888 0,008 0,001

Median 23,52% 1,14% 0,07% 23,85 30,33 827,43 -15,99 0,16

Median S. natans VIII 0,80% 35,86 -15,33 0,17

Median S. natans I 1,19% 22,03 -15,31 -0,38

Median S. fluitans III 1,20% 20,76 -16,75 1,33

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4330794

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed

Median

MedianMedian S. natans 

Median 

MedianMedian

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed
S. natans VIIIVIII vs S. natans vs S. natans I 

S. natans S. natans VIIIVIII vs S. fluitans  vs S. fluitans III

Dunns p-value  S. natans  S. natans I I vs S. fluitans vs S. fluitans 

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed
Kruskal Wallis Chi2Kruskal Wallis Chi2 3,62 6,635

df 2

p-valuep-value 0,164

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed
%C%C %N

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed

Fig. S3: Floats ratio after 9 days for the 3 morphotypes. Box shows the sample median and the first Fig. S3: Floats ratio after 9 days for the 3 morphotypes. Box shows the sample median and the first 

and third quartiles. Whiskers extend to the last data point which is no more than 1.5 times the and third quartiles. Whiskers extend to the last data point which is no more than 1.5 times the 

interquartile range. Outliers are shown as dots. The KW test interquartile range. Outliers are shown as dots. The KW test χ

The only significant Dunns post hoc test is between The only significant Dunns post hoc test is between S. natans S. natans 

 III and  III and S. natansS. natans VII show values over 100% since they have more  VII show values over 100% since they have more 

floats at the end of the experiment than at the beginning.floats at the end of the experiment than at the beginning.

Table S1: Synthesis of Kruskal-Wallis and Dunns post hoc test results for the morphotype effect on Table S1: Synthesis of Kruskal-Wallis and Dunns post hoc test results for the morphotype effect on 

 composition in %C, %N, %P, C:N, N:P, C:P,  composition in %C, %N, %P, C:N, N:P, C:P, 
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